library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.2 ✔ tibble 3.3.0
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.1.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(readxl)
library(pastecs)
##
## Attaching package: 'pastecs'
##
## The following objects are masked from 'package:dplyr':
##
## first, last
##
## The following object is masked from 'package:tidyr':
##
## extract
setwd("C:/Users/David/Desktop/My Class Stuff/Wednesday Class")
data_florida <- read_excel("Data_Florida.xlsx", sheet = "Award Year Summary")
## New names:
## • `Recipients` -> `Recipients...6`
## • `# of Loans Originated` -> `# of Loans Originated...7`
## • `$ of Loans Originated` -> `$ of Loans Originated...8`
## • `# of Disbursements` -> `# of Disbursements...9`
## • `$ of Disbursements` -> `$ of Disbursements...10`
## • `Recipients` -> `Recipients...11`
## • `# of Loans Originated` -> `# of Loans Originated...12`
## • `$ of Loans Originated` -> `$ of Loans Originated...13`
## • `# of Disbursements` -> `# of Disbursements...14`
## • `$ of Disbursements` -> `$ of Disbursements...15`
## • `Recipients` -> `Recipients...16`
## • `# of Loans Originated` -> `# of Loans Originated...17`
## • `$ of Loans Originated` -> `$ of Loans Originated...18`
## • `# of Disbursements` -> `# of Disbursements...19`
## • `$ of Disbursements` -> `$ of Disbursements...20`
## • `Recipients` -> `Recipients...21`
## • `# of Loans Originated` -> `# of Loans Originated...22`
## • `$ of Loans Originated` -> `$ of Loans Originated...23`
## • `# of Disbursements` -> `# of Disbursements...24`
## • `$ of Disbursements` -> `$ of Disbursements...25`
names(data_florida)
## [1] "OPE ID" "School"
## [3] "State" "Zip Code"
## [5] "School Type" "Recipients...6"
## [7] "# of Loans Originated...7" "$ of Loans Originated...8"
## [9] "# of Disbursements...9" "$ of Disbursements...10"
## [11] "Recipients...11" "# of Loans Originated...12"
## [13] "$ of Loans Originated...13" "# of Disbursements...14"
## [15] "$ of Disbursements...15" "Recipients...16"
## [17] "# of Loans Originated...17" "$ of Loans Originated...18"
## [19] "# of Disbursements...19" "$ of Disbursements...20"
## [21] "Recipients...21" "# of Loans Originated...22"
## [23] "$ of Loans Originated...23" "# of Disbursements...24"
## [25] "$ of Disbursements...25"
#1
fl_loans <- data_florida %>% select(school_type = `School Type`, total_loans = `$ of Loans Originated...8`)
#2: Total loans is the dollar amount of loans distributed to students under the FEEL subsidized loan program during the 2009-2010 year.
stat.desc(fl_loans$total_loans)
## nbr.val nbr.null nbr.na min max range
## 3.820000e+03 1.140000e+02 0.000000e+00 0.000000e+00 2.833224e+08 2.833224e+08
## sum median mean SE.mean CI.mean.0.95 var
## 1.300420e+10 6.665555e+05 3.404240e+06 1.515814e+05 2.971883e+05 8.777184e+13
## std.dev coef.var
## 9.368663e+06 2.752057e+00
#3 Remove NAs
fl_loans_clean <- fl_loans |> dplyr::filter(!is.na(total_loans))
#4 Histogram
hist(fl_loans_clean$total_loans)

#5 Log Transformation
fl_loans_clean <- fl_loans_clean %>% mutate(log_loans= log1p(total_loans))
summary(fl_loans_clean$log_loans)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00 11.19 13.41 12.76 14.93 19.46
#6 histogram of log transformation
hist(fl_loans_clean$log_loans)
