# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize and compare skewness of your portfolio and its assets.
Choose your stocks.
from 2012-12-31 to 2017-12-31
symbols <- c("TSLA", "AMZN", "NVDA", "DELL", "WMT")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period ="monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
#Symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AMZN" "DELL" "NVDA" "TSLA" "WMT"
#Weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 Ă— 2
## symbols weights
## <chr> <dbl>
## 1 AMZN 0.25
## 2 DELL 0.25
## 3 NVDA 0.2
## 4 TSLA 0.2
## 5 WMT 0.1
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
reabalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 Ă— 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0371
## 2 2013-02-28 -0.00840
## 3 2013-03-28 0.0278
## 4 2013-04-30 0.0799
## 5 2013-05-31 0.176
## 6 2013-06-28 0.0338
## 7 2013-07-31 0.109
## 8 2013-08-30 0.0816
## 9 2013-09-30 0.0901
## 10 2013-10-31 -0.0687
## # ℹ 50 more rows
portfolio_skew_tidquant_builtin_percent <- portfolio_returns_tbl %>%
tq_performance(Ra = returns,
performance_fun = table.Stats) %>%
select(Skewness)
portfolio_skew_tidquant_builtin_percent
## # A tibble: 1 Ă— 1
## Skewness
## <dbl>
## 1 -0.0689
# Calculate SD of peortfolio returns
sd_portfolio <- sd(portfolio_returns_tbl$returns)
mean_portfolio <- mean(portfolio_returns_tbl$returns)
portfolio_returns_tbl %>%
# Add a new variable
mutate(extreme_neg = ifelse(returns < mean_portfolio - 2 * sd_portfolio,
"ext_neg",
"not_ext_neg")) %>%
ggplot(aes(x = returns, fill = extreme_neg)) +
geom_histogram(binwidth = 0.003) +
scale_x_continuous(breaks = seq(-0.06, 0.06, 0.02)) +
labs(x = "monthly returns")
# Data transformation: Calculate Skewness
asset_skewness_tbl <- asset_returns_tbl %>%
group_by(asset) %>%
summarise(skew = skewness(returns)) %>%
ungroup() %>%
# Add portfolio Skewness
add_row(tibble(asset = "Portfolio",
skew = skewness(portfolio_returns_tbl$returns)))
asset_skewness_tbl
## # A tibble: 6 Ă— 2
## asset skew
## <chr> <dbl>
## 1 AMZN 0.187
## 2 DELL -0.620
## 3 NVDA 0.899
## 4 TSLA 0.944
## 5 WMT 0.0723
## 6 Portfolio -0.0689
# Plot Skewness
asset_skewness_tbl %>%
ggplot(aes(x = asset, y = skew, color = asset)) +
geom_point() +
ggrepel::geom_text_repel(aes(label = asset),
data = asset_skewness_tbl %>%
filter(asset == "Portfolio")) +
labs(y = "skewness")
# Transform data: Calculate rolling skewness
rolling_skew_tbl <- portfolio_returns_tbl %>%
tq_mutate(select = returns,
mutate_fun = rollapply,
width = 24,
FUN = skewness,
col_rename = "Skew") %>%
select(-returns) %>%
na.omit()
# Plot
rolling_skew_tbl %>%
ggplot(aes(x = date, y = Skew)) +
geom_line(color = "coral3") +
geom_hline(yintercept = 0, linetype = "dotted", size = 2) +
# Formatting
scale_y_continuous(breaks = seq(-1,1,0.2)) +
theme(plot.title = element_text(hjust = 0.5)) +
# Labeling
labs(y="skewness",
x = NULL,
title = "Rolling 24-Month Skewness") +
annotate(geom = "text", x = as.Date("2016-07-01"),
y = 0.8, color = "red",
size = 5,
label = str_glue(""))
asset_returns_tbl %>%
ggplot(aes(x = returns)) +
geom_density(aes(color = asset), show.legend = FALSE, alpha = 1) +
geom_histogram(aes(fill = asset), show.legend = FALSE, alpha = 0.3, binwidth = 0.01) +
facet_wrap(~asset, ncol = 1)
# labeling
labs(title = "Distribution of Monthly Returns 2012=2015",
y = "frequency",
x = "rate of returns",
caption =
"A typical monthly return is higher for SPV and 135 than for AGG, EEM, and EFA")
## $y
## [1] "frequency"
##
## $x
## [1] "rate of returns"
##
## $title
## [1] "Distribution of Monthly Returns 2012=2015"
##
## $caption
## [1] "A typical monthly return is higher for SPV and 135 than for AGG, EEM, and EFA"
##
## attr(,"class")
## [1] "labels"
Is any asset in your portfolio more likely to return extreme positive returns than your portfolio collectively? Discuss in terms of skewness. You may also refer to the distribution of returns you plotted in Code along 4.
NVDA and TSLA are the most likely to return extreme positives in comparison to the portfolio. Tesla and Nvidia’s skewness are close to 1, and the portfolio is at