Import data

# excel file
data <- read_excel("../00_data/Salaries.xlsx")
data
## # A tibble: 397 × 6
##    rank      discipline yrs.since.phd yrs.service sex    salary
##    <chr>     <chr>              <dbl>       <dbl> <chr>   <dbl>
##  1 Prof      B                     19          18 Male   139750
##  2 Prof      B                     20          16 Male   173200
##  3 AsstProf  B                      4           3 Male    79750
##  4 Prof      B                     45          39 Male   115000
##  5 Prof      B                     40          41 Male   141500
##  6 AssocProf B                      6           6 Male    97000
##  7 Prof      B                     30          23 Male   175000
##  8 Prof      B                     45          45 Male   147765
##  9 Prof      B                     21          20 Male   119250
## 10 Prof      B                     18          18 Female 129000
## # ℹ 387 more rows

Apply the following dplyr verbs to your data

Filter rows

filter(data, rank == "Prof")
## # A tibble: 266 × 6
##    rank  discipline yrs.since.phd yrs.service sex    salary
##    <chr> <chr>              <dbl>       <dbl> <chr>   <dbl>
##  1 Prof  B                     19          18 Male   139750
##  2 Prof  B                     20          16 Male   173200
##  3 Prof  B                     45          39 Male   115000
##  4 Prof  B                     40          41 Male   141500
##  5 Prof  B                     30          23 Male   175000
##  6 Prof  B                     45          45 Male   147765
##  7 Prof  B                     21          20 Male   119250
##  8 Prof  B                     18          18 Female 129000
##  9 Prof  B                     20          18 Male   104800
## 10 Prof  B                     12           3 Male   117150
## # ℹ 256 more rows

Arrange rows

arrange(data, yrs.since.phd)
## # A tibble: 397 × 6
##    rank     discipline yrs.since.phd yrs.service sex    salary
##    <chr>    <chr>              <dbl>       <dbl> <chr>   <dbl>
##  1 AsstProf B                      1           1 Male    77700
##  2 AsstProf B                      1           1 Male    70768
##  3 AsstProf B                      1           0 Male    88000
##  4 AsstProf B                      1           0 Male    88795
##  5 AsstProf B                      2           0 Male    78000
##  6 AsstProf B                      2           2 Male    88400
##  7 AsstProf A                      2           0 Female  72500
##  8 AsstProf B                      2           2 Male    89516
##  9 AsstProf A                      2           0 Male    85000
## 10 AsstProf B                      3           2 Male    75243
## # ℹ 387 more rows

Select columns

Add columns

Summarize by groups