Introduction
Questions
Variation
Visualizing Distributions
diamonds %>%
ggplot(aes(x=cut)) +
geom_bar()

diamonds %>%
ggplot(mapping=aes(x+carat)) +
geom_histogram(binwidth=0.5)

diamonds %>%
filter(carat < 3) %>%
ggplot(aes(x=carat)) +
geom_histogram(binwidth = 0.5)

diamonds %>%
ggplot (aes(x=carat,color=cut)) +
geom_freqpoly()
## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.

Typical Values
diamonds %>%
# filter out diamonds > 3 carat
filter(carat > 3) %>%
# Plot
ggplot(aes(x=carat))+
geom_histogram(binwidth = 0.01)

faithful %>%
ggplot(aes(eruptions))+
geom_histogram(binwidth = 0.25)

Unusual values
diamonds %>%
ggplot(aes(x+y))+
geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.

diamonds %>%
ggplot(aes(x=y))+
geom_histogram()+
coord_cartesian(ylim = c(0,50))
## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.

Missing values
diamonds %>%
#filter(y< 3 | y > 20) %>%
mutate(y= ifelse(y< 3| y > 20, NA, y)) %>%
# Plot
ggplot(aes(x=x, y= y)) +
geom_point()
## Warning: Removed 9 rows containing missing values or values outside the scale range
## (`geom_point()`).

Covariation
a categorical and continious variable
diamonds %>%
ggplot(aes(x= cut, y = price))+
geom_boxplot()

two categorical variables
diamonds %>%
count(color, cut) %>%
ggplot(aes(x=color, y=cut, fill= n))+
geom_tile()

two continous variables
library(hexbin)
diamonds %>%
ggplot(aes(x=carat, y= price))+
geom_hex()

diamonds %>%
filter(carat < 3) %>%
ggplot(aes(x=carat, y= price))+
geom_boxplot(aes(group=cut_width(carat, 0.1)))

Patterns and models
library(modelr)
mod <- lm(log(price) ~ log(carat), data = diamonds)
diamonds4 <- diamonds %>%
modelr::add_residuals(mod) %>%
mutate(resid= exp(resid))
diamonds4 %>%
ggplot(aes(carat, resid))+
geom_point()

diamonds4 %>%
ggplot(aes(cut, resid))+
geom_boxplot()
