Import data
# csv file
data <- read_csv("https://raw.githubusercontent.com/rfordatascience/tidytuesday/main/data/2025/2025-01-21/peaks_tidy.csv")
## Rows: 480 Columns: 29
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (14): PEAKID, PKNAME, PKNAME2, LOCATION, HIMAL_FACTOR, REGION_FACTOR, RE...
## dbl (12): HEIGHTM, HEIGHTF, HIMAL, REGION, TREKYEAR, PHOST, PSTATUS, PEAKMEM...
## lgl (3): OPEN, UNLISTED, TREKKING
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
data
## # A tibble: 480 × 29
## PEAKID PKNAME PKNAME2 LOCATION HEIGHTM HEIGHTF HIMAL HIMAL_FACTOR REGION
## <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <chr> <dbl>
## 1 AMAD Ama Dablam Amai D… Khumbu … 6814 22356 12 Khumbu 2
## 2 AMPG Amphu Gyab… Amphu … Khumbu … 5630 18471 12 Khumbu 2
## 3 ANN1 Annapurna I <NA> Annapur… 8091 26545 1 Annapurna 5
## 4 ANN2 Annapurna … <NA> Annapur… 7937 26040 1 Annapurna 5
## 5 ANN3 Annapurna … <NA> Annapur… 7555 24787 1 Annapurna 5
## 6 ANN4 Annapurna … <NA> Annapur… 7525 24688 1 Annapurna 5
## 7 ANNE Annapurna … <NA> Annapur… 8026 26332 1 Annapurna 5
## 8 ANNM Annapurna … <NA> Annapur… 8051 26414 1 Annapurna 5
## 9 ANNS Annapurna … Annapu… Annapur… 7219 23684 1 Annapurna 5
## 10 APIM Api Main <NA> Api Him… 7132 23399 2 Api/Byas Ri… 7
## # ℹ 470 more rows
## # ℹ 20 more variables: REGION_FACTOR <chr>, OPEN <lgl>, UNLISTED <lgl>,
## # TREKKING <lgl>, TREKYEAR <dbl>, RESTRICT <chr>, PHOST <dbl>,
## # PHOST_FACTOR <chr>, PSTATUS <dbl>, PSTATUS_FACTOR <chr>, PEAKMEMO <dbl>,
## # PYEAR <dbl>, PSEASON <dbl>, PEXPID <chr>, PSMTDATE <chr>, PCOUNTRY <chr>,
## # PSUMMITERS <chr>, PSMTNOTE <chr>, REFERMEMO <dbl>, PHOTOMEMO <dbl>
Apply the following dplyr verbs to your data
Filter rows
filter(data, PEAKID == "AMAD")
## # A tibble: 1 × 29
## PEAKID PKNAME PKNAME2 LOCATION HEIGHTM HEIGHTF HIMAL HIMAL_FACTOR REGION
## <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <chr> <dbl>
## 1 AMAD Ama Dablam Amai Dab… Khumbu … 6814 22356 12 Khumbu 2
## # ℹ 20 more variables: REGION_FACTOR <chr>, OPEN <lgl>, UNLISTED <lgl>,
## # TREKKING <lgl>, TREKYEAR <dbl>, RESTRICT <chr>, PHOST <dbl>,
## # PHOST_FACTOR <chr>, PSTATUS <dbl>, PSTATUS_FACTOR <chr>, PEAKMEMO <dbl>,
## # PYEAR <dbl>, PSEASON <dbl>, PEXPID <chr>, PSMTDATE <chr>, PCOUNTRY <chr>,
## # PSUMMITERS <chr>, PSMTNOTE <chr>, REFERMEMO <dbl>, PHOTOMEMO <dbl>
Arrange rows
arrange(data, desc(PEAKID))
## # A tibble: 480 × 29
## PEAKID PKNAME PKNAME2 LOCATION HEIGHTM HEIGHTF HIMAL HIMAL_FACTOR REGION
## <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <chr> <dbl>
## 1 YUBR Yubra <NA> Langtan… 6264 20551 13 Langtang 3
## 2 YOKO Yokopahar Nampa … Guras H… 6423 21073 2 Api/Byas Ri… 7
## 3 YNGS Yangra Kan… Yangra… Ganesh … 6863 22516 5 Ganesh/Shri… 4
## 4 YLNG Yalung Peak <NA> Kangche… 7590 24902 9 Kangchenjun… 1
## 5 YAUP Yaupa <NA> Makalu … 6422 21070 14 Makalu 2
## 6 YARW Yarwa <NA> Guras H… 6644 21798 2 Api/Byas Ri… 7
## 7 YARA Yara Chuli Yala C… Palchun… 6236 20459 11 Kanti/Palch… 7
## 8 YANS Yansa Tsen… Dragpo… Langtan… 6567 21545 13 Langtang 3
## 9 YANK Yanme Kang Yanme … Ohmi Ka… 6206 20361 6 Janak/Ohmi … 1
## 10 YANG Yangri Jugal Jugal H… 6535 21440 8 Jugal 3
## # ℹ 470 more rows
## # ℹ 20 more variables: REGION_FACTOR <chr>, OPEN <lgl>, UNLISTED <lgl>,
## # TREKKING <lgl>, TREKYEAR <dbl>, RESTRICT <chr>, PHOST <dbl>,
## # PHOST_FACTOR <chr>, PSTATUS <dbl>, PSTATUS_FACTOR <chr>, PEAKMEMO <dbl>,
## # PYEAR <dbl>, PSEASON <dbl>, PEXPID <chr>, PSMTDATE <chr>, PCOUNTRY <chr>,
## # PSUMMITERS <chr>, PSMTNOTE <chr>, REFERMEMO <dbl>, PHOTOMEMO <dbl>
Select columns
select(data, PEAKID)
## # A tibble: 480 × 1
## PEAKID
## <chr>
## 1 AMAD
## 2 AMPG
## 3 ANN1
## 4 ANN2
## 5 ANN3
## 6 ANN4
## 7 ANNE
## 8 ANNM
## 9 ANNS
## 10 APIM
## # ℹ 470 more rows
Add columns
mutate(data,
gain = paste0(PEAKID, "_", PKNAME))
## # A tibble: 480 × 30
## PEAKID PKNAME PKNAME2 LOCATION HEIGHTM HEIGHTF HIMAL HIMAL_FACTOR REGION
## <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <chr> <dbl>
## 1 AMAD Ama Dablam Amai D… Khumbu … 6814 22356 12 Khumbu 2
## 2 AMPG Amphu Gyab… Amphu … Khumbu … 5630 18471 12 Khumbu 2
## 3 ANN1 Annapurna I <NA> Annapur… 8091 26545 1 Annapurna 5
## 4 ANN2 Annapurna … <NA> Annapur… 7937 26040 1 Annapurna 5
## 5 ANN3 Annapurna … <NA> Annapur… 7555 24787 1 Annapurna 5
## 6 ANN4 Annapurna … <NA> Annapur… 7525 24688 1 Annapurna 5
## 7 ANNE Annapurna … <NA> Annapur… 8026 26332 1 Annapurna 5
## 8 ANNM Annapurna … <NA> Annapur… 8051 26414 1 Annapurna 5
## 9 ANNS Annapurna … Annapu… Annapur… 7219 23684 1 Annapurna 5
## 10 APIM Api Main <NA> Api Him… 7132 23399 2 Api/Byas Ri… 7
## # ℹ 470 more rows
## # ℹ 21 more variables: REGION_FACTOR <chr>, OPEN <lgl>, UNLISTED <lgl>,
## # TREKKING <lgl>, TREKYEAR <dbl>, RESTRICT <chr>, PHOST <dbl>,
## # PHOST_FACTOR <chr>, PSTATUS <dbl>, PSTATUS_FACTOR <chr>, PEAKMEMO <dbl>,
## # PYEAR <dbl>, PSEASON <dbl>, PEXPID <chr>, PSMTDATE <chr>, PCOUNTRY <chr>,
## # PSUMMITERS <chr>, PSMTNOTE <chr>, REFERMEMO <dbl>, PHOTOMEMO <dbl>,
## # gain <chr>
Summarize by groups