ob = read.csv("C:\\Thach\\VN trips\\2025_7Oct\\Truong DH Kien Truc Da Nang\\Datasets\\Obesity data.csv")
library(table1)
##
## Attaching package: 'table1'
## The following objects are masked from 'package:base':
##
## units, units<-
table1(~ age + gender + weight + height + pcfat + hypertension + diabetes, data = ob)
Overall (N=1217) |
|
---|---|
age | |
Mean (SD) | 47.2 (17.3) |
Median [Min, Max] | 48.0 [13.0, 88.0] |
gender | |
F | 862 (70.8%) |
M | 355 (29.2%) |
weight | |
Mean (SD) | 55.1 (9.40) |
Median [Min, Max] | 54.0 [34.0, 95.0] |
height | |
Mean (SD) | 157 (7.98) |
Median [Min, Max] | 155 [136, 185] |
pcfat | |
Mean (SD) | 31.6 (7.18) |
Median [Min, Max] | 32.4 [9.20, 48.4] |
hypertension | |
Mean (SD) | 0.507 (0.500) |
Median [Min, Max] | 1.00 [0, 1.00] |
diabetes | |
Mean (SD) | 0.111 (0.314) |
Median [Min, Max] | 0 [0, 1.00] |
ob$hyper = as.factor(ob$hypertension)
ob$diab = as.factor(ob$diabetes)
table1(~ age + gender + weight + height + pcfat + hypertension + hyper + diabetes + diab, data = ob)
Overall (N=1217) |
|
---|---|
age | |
Mean (SD) | 47.2 (17.3) |
Median [Min, Max] | 48.0 [13.0, 88.0] |
gender | |
F | 862 (70.8%) |
M | 355 (29.2%) |
weight | |
Mean (SD) | 55.1 (9.40) |
Median [Min, Max] | 54.0 [34.0, 95.0] |
height | |
Mean (SD) | 157 (7.98) |
Median [Min, Max] | 155 [136, 185] |
pcfat | |
Mean (SD) | 31.6 (7.18) |
Median [Min, Max] | 32.4 [9.20, 48.4] |
hypertension | |
Mean (SD) | 0.507 (0.500) |
Median [Min, Max] | 1.00 [0, 1.00] |
hyper | |
0 | 600 (49.3%) |
1 | 617 (50.7%) |
diabetes | |
Mean (SD) | 0.111 (0.314) |
Median [Min, Max] | 0 [0, 1.00] |
diab | |
0 | 1082 (88.9%) |
1 | 135 (11.1%) |
table1(~ age + weight + height + pcfat, data = ob, render.continuous = c(. = "Mean (SD)", . = "Median [Q1, Q3]"))
Overall (N=1217) |
|
---|---|
age | |
Mean (SD) | 47.2 (17.3) |
Median [Q1, Q3] | 48.0 [35.0, 58.0] |
weight | |
Mean (SD) | 55.1 (9.40) |
Median [Q1, Q3] | 54.0 [49.0, 61.0] |
height | |
Mean (SD) | 157 (7.98) |
Median [Q1, Q3] | 155 [151, 162] |
pcfat | |
Mean (SD) | 31.6 (7.18) |
Median [Q1, Q3] | 32.4 [27.0, 36.8] |
table1(~ age + weight + height + pcfat + hyper + diab | gender, data = ob)
F (N=862) |
M (N=355) |
Overall (N=1217) |
|
---|---|---|---|
age | |||
Mean (SD) | 48.6 (16.4) | 43.7 (18.8) | 47.2 (17.3) |
Median [Min, Max] | 49.0 [14.0, 85.0] | 44.0 [13.0, 88.0] | 48.0 [13.0, 88.0] |
weight | |||
Mean (SD) | 52.3 (7.72) | 62.0 (9.59) | 55.1 (9.40) |
Median [Min, Max] | 51.0 [34.0, 95.0] | 62.0 [38.0, 95.0] | 54.0 [34.0, 95.0] |
height | |||
Mean (SD) | 153 (5.55) | 165 (6.73) | 157 (7.98) |
Median [Min, Max] | 153 [136, 170] | 165 [146, 185] | 155 [136, 185] |
pcfat | |||
Mean (SD) | 34.7 (5.19) | 24.2 (5.76) | 31.6 (7.18) |
Median [Min, Max] | 34.7 [14.6, 48.4] | 24.6 [9.20, 39.0] | 32.4 [9.20, 48.4] |
hyper | |||
0 | 430 (49.9%) | 170 (47.9%) | 600 (49.3%) |
1 | 432 (50.1%) | 185 (52.1%) | 617 (50.7%) |
diab | |||
0 | 760 (88.2%) | 322 (90.7%) | 1082 (88.9%) |
1 | 102 (11.8%) | 33 (9.3%) | 135 (11.1%) |
library(compareGroups)
createTable(compareGroups(gender ~ age + weight + height + pcfat + hyper + diab, data = ob))
##
## --------Summary descriptives table by 'gender'---------
##
## ________________________________________
## F M p.overall
## N=862 N=355
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
## age 48.6 (16.4) 43.7 (18.8) <0.001
## weight 52.3 (7.72) 62.0 (9.59) <0.001
## height 153 (5.55) 165 (6.73) <0.001
## pcfat 34.7 (5.19) 24.2 (5.76) <0.001
## hyper: 0.569
## 0 430 (49.9%) 170 (47.9%)
## 1 432 (50.1%) 185 (52.1%)
## diab: 0.238
## 0 760 (88.2%) 322 (90.7%)
## 1 102 (11.8%) 33 (9.30%)
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
A = c(14, 4, 10, 6, 3, 11, 12)
B = c(16, 17, 13, 12, 7, 16, 11, 8, 7)
wt = c(A, B)
group = c(rep("A", 7), rep("B", 9))
df = data.frame(wt, group)
dim(df)
## [1] 16 2
library(lessR)
## Warning: package 'lessR' was built under R version 4.3.3
##
## lessR 4.3.9 feedback: gerbing@pdx.edu
## --------------------------------------------------------------
## > d <- Read("") Read text, Excel, SPSS, SAS, or R data file
## d is default data frame, data= in analysis routines optional
##
## Many examples of reading, writing, and manipulating data,
## graphics, testing means and proportions, regression, factor analysis,
## customization, and descriptive statistics from pivot tables
## Enter: browseVignettes("lessR")
##
## View lessR updates, now including time series forecasting
## Enter: news(package="lessR")
##
## Interactive data analysis
## Enter: interact()
##
## Attaching package: 'lessR'
## The following object is masked from 'package:table1':
##
## label
Histogram(wt, data = df)
## >>> Note: wt is not in a data frame (table)
## >>> Note: wt is not in a data frame (table)
## >>> Suggestions
## bin_width: set the width of each bin
## bin_start: set the start of the first bin
## bin_end: set the end of the last bin
## Histogram(wt, density=TRUE) # smoothed curve + histogram
## Plot(wt) # Violin/Box/Scatterplot (VBS) plot
##
## --- wt ---
##
## n miss mean sd min mdn max
## 16 0 10.44 4.29 3.00 11.00 17.00
##
## No (Box plot) outliers
##
##
## Bin Width: 2
## Number of Bins: 8
##
## Bin Midpnt Count Prop Cumul.c Cumul.p
## -------------------------------------------------
## 2 > 4 3 2 0.12 2 0.12
## 4 > 6 5 1 0.06 3 0.19
## 6 > 8 7 3 0.19 6 0.38
## 8 > 10 9 1 0.06 7 0.44
## 10 > 12 11 4 0.25 11 0.69
## 12 > 14 13 2 0.12 13 0.81
## 14 > 16 15 2 0.12 15 0.94
## 16 > 18 17 1 0.06 16 1.00
shapiro.test(df$wt)
##
## Shapiro-Wilk normality test
##
## data: df$wt
## W = 0.96213, p-value = 0.7006
library(table1)
table1(~ wt | group, data = df, render.continuous = c(. = "Mean (SD)", . = "Median [Q1, Q3]"))
A (N=7) |
B (N=9) |
Overall (N=16) |
|
---|---|---|---|
wt | |||
Mean (SD) | 8.57 (4.24) | 11.9 (3.95) | 10.4 (4.29) |
Median [Q1, Q3] | 10.0 [5.00, 11.5] | 12.0 [8.00, 16.0] | 11.0 [7.00, 13.3] |
t.test(A, B)
##
## Welch Two Sample t-test
##
## data: A and B
## t = -1.6, df = 12.554, p-value = 0.1345
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -7.813114 1.178194
## sample estimates:
## mean of x mean of y
## 8.571429 11.888889
t.test(wt ~ group, data = df)
##
## Welch Two Sample t-test
##
## data: wt by group
## t = -1.6, df = 12.554, p-value = 0.1345
## alternative hypothesis: true difference in means between group A and group B is not equal to 0
## 95 percent confidence interval:
## -7.813114 1.178194
## sample estimates:
## mean in group A mean in group B
## 8.571429 11.888889
library(simpleboot)
## Simple Bootstrap Routines (1.1-7)
library(boot)
b = two.boot(A, B, mean, R = 1000)
boot.ci(b)
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 1000 bootstrap replicates
##
## CALL :
## boot.ci(boot.out = b)
##
## Intervals :
## Level Normal Basic
## 95% (-7.300, 0.381 ) (-7.206, 0.396 )
##
## Level Percentile BCa
## 95% (-7.031, 0.571 ) (-7.796, 0.211 )
## Calculations and Intervals on Original Scale
hist(b, breaks = 50)