Tarea2 Seminario2:Series temporales usando analisis de intervención para la base Balanza_Comercial_de_Mercancías_según_CIIU_Rev._4._ValoresOriginal

Author

Katerin Raquel Zepeda Avila

# --- Cargar librerías ---
# 'forecast' para auto.arima y 'tsoutlier' para el análisis de intervención.
library(forecast)
Warning: package 'forecast' was built under R version 4.3.3
Registered S3 method overwritten by 'quantmod':
  method            from
  as.zoo.data.frame zoo 
library(tsoutliers)
Warning: package 'tsoutliers' was built under R version 4.3.3
library(haven)
Warning: package 'haven' was built under R version 4.3.2
# --- Cargar los datos ---
# Agricultura, ganadería, silvicultura y pesca

bcm_data <- read_sav("Balanza_Comercial_de_Mercancías_según_CIIU_Rev._4._ValoresOriginal.sav")

head(bcm_data, 10)
# A tibble: 10 × 5
   Concepto   BCM YEAR_ MONTH_ DATE_   
   <chr>    <dbl> <dbl>  <dbl> <chr>   
 1 2000-01   48.3  2000      1 JAN 2000
 2 2000-02   56.3  2000      2 FEB 2000
 3 2000-03   40.9  2000      3 MAR 2000
 4 2000-04   46.8  2000      4 APR 2000
 5 2000-05   34.0  2000      5 MAY 2000
 6 2000-06   25.7  2000      6 JUN 2000
 7 2000-07   24.5  2000      7 JUL 2000
 8 2000-08   23.4  2000      8 AUG 2000
 9 2000-09   14.3  2000      9 SEP 2000
10 2000-10   11.8  2000     10 OCT 2000
# --- Crear el objeto de serie temporal (ts) ---
# Frecuencia mensual (12)

bcm_ts <- ts(bcm_data$BCM, start = c(2000, 1), frequency = 12)

# --- Visualizar la serie  ---
plot(bcm_ts, main="Balanza_Comercial_de_Mercancías_según_CIIU_Rev._4._Valores (2000-2025)", 
     ylab="BCM", xlab="Año")

El gráfico representa lo que es la evolución entre los años 2000 y 2025. La serie es estacional, con picos recurrentes, pero muestra una caída inicial en (2000-2005), un gran evento atípico en el año 2010-2012, y luego una estabilización con fluctuaciones regulares hasta 2025.

# --- Encontrar el mejor modelo ARIMA automáticamente ---

# Forzamos la diferenciación (d=1, D=1) que sabemos que es necesaria.
# 'stepwise=FALSE' y 'approximation=FALSE' hacen la búsqueda más exhaustiva.

auto_modelBCM <- auto.arima(bcm_ts, 
                         d = 1, D = 1, 
                         stepwise = FALSE, 
                         approximation = FALSE, 
                         trace = TRUE)

 ARIMA(0,1,0)(0,1,0)[12]                    : 1832.281
 ARIMA(0,1,0)(0,1,1)[12]                    : 1755.318
 ARIMA(0,1,0)(0,1,2)[12]                    : 1753.438
 ARIMA(0,1,0)(1,1,0)[12]                    : 1789.467
 ARIMA(0,1,0)(1,1,1)[12]                    : Inf
 ARIMA(0,1,0)(1,1,2)[12]                    : Inf
 ARIMA(0,1,0)(2,1,0)[12]                    : 1767.02
 ARIMA(0,1,0)(2,1,1)[12]                    : Inf
 ARIMA(0,1,0)(2,1,2)[12]                    : Inf
 ARIMA(0,1,1)(0,1,0)[12]                    : 1826.18
 ARIMA(0,1,1)(0,1,1)[12]                    : 1755.221
 ARIMA(0,1,1)(0,1,2)[12]                    : 1753.517
 ARIMA(0,1,1)(1,1,0)[12]                    : 1785.834
 ARIMA(0,1,1)(1,1,1)[12]                    : Inf
 ARIMA(0,1,1)(1,1,2)[12]                    : Inf
 ARIMA(0,1,1)(2,1,0)[12]                    : 1764.48
 ARIMA(0,1,1)(2,1,1)[12]                    : Inf
 ARIMA(0,1,1)(2,1,2)[12]                    : Inf
 ARIMA(0,1,2)(0,1,0)[12]                    : 1824.666
 ARIMA(0,1,2)(0,1,1)[12]                    : 1751.568
 ARIMA(0,1,2)(0,1,2)[12]                    : 1749.526
 ARIMA(0,1,2)(1,1,0)[12]                    : 1784.809
 ARIMA(0,1,2)(1,1,1)[12]                    : 1748.692
 ARIMA(0,1,2)(1,1,2)[12]                    : 1750.472
 ARIMA(0,1,2)(2,1,0)[12]                    : 1759.108
 ARIMA(0,1,2)(2,1,1)[12]                    : Inf
 ARIMA(0,1,3)(0,1,0)[12]                    : 1825.785
 ARIMA(0,1,3)(0,1,1)[12]                    : 1753.418
 ARIMA(0,1,3)(0,1,2)[12]                    : 1751.328
 ARIMA(0,1,3)(1,1,0)[12]                    : 1786.152
 ARIMA(0,1,3)(1,1,1)[12]                    : 1750.342
 ARIMA(0,1,3)(2,1,0)[12]                    : 1760.775
 ARIMA(0,1,4)(0,1,0)[12]                    : 1827.212
 ARIMA(0,1,4)(0,1,1)[12]                    : 1750.875
 ARIMA(0,1,4)(1,1,0)[12]                    : 1784.496
 ARIMA(0,1,5)(0,1,0)[12]                    : 1829.271
 ARIMA(1,1,0)(0,1,0)[12]                    : 1824.92
 ARIMA(1,1,0)(0,1,1)[12]                    : 1754.704
 ARIMA(1,1,0)(0,1,2)[12]                    : 1753.016
 ARIMA(1,1,0)(1,1,0)[12]                    : 1785.007
 ARIMA(1,1,0)(1,1,1)[12]                    : Inf
 ARIMA(1,1,0)(1,1,2)[12]                    : Inf
 ARIMA(1,1,0)(2,1,0)[12]                    : 1763.352
 ARIMA(1,1,0)(2,1,1)[12]                    : Inf
 ARIMA(1,1,0)(2,1,2)[12]                    : Inf
 ARIMA(1,1,1)(0,1,0)[12]                    : 1826.582
 ARIMA(1,1,1)(0,1,1)[12]                    : 1755.549
 ARIMA(1,1,1)(0,1,2)[12]                    : 1753.753
 ARIMA(1,1,1)(1,1,0)[12]                    : 1786.671
 ARIMA(1,1,1)(1,1,1)[12]                    : Inf
 ARIMA(1,1,1)(1,1,2)[12]                    : Inf
 ARIMA(1,1,1)(2,1,0)[12]                    : 1764.079
 ARIMA(1,1,1)(2,1,1)[12]                    : Inf
 ARIMA(1,1,2)(0,1,0)[12]                    : Inf
 ARIMA(1,1,2)(0,1,1)[12]                    : 1753.563
 ARIMA(1,1,2)(0,1,2)[12]                    : 1751.504
 ARIMA(1,1,2)(1,1,0)[12]                    : 1786.691
 ARIMA(1,1,2)(1,1,1)[12]                    : 1750.622
 ARIMA(1,1,2)(2,1,0)[12]                    : 1761.02
 ARIMA(1,1,3)(0,1,0)[12]                    : Inf
 ARIMA(1,1,3)(0,1,1)[12]                    : 1754.573
 ARIMA(1,1,3)(1,1,0)[12]                    : Inf
 ARIMA(1,1,4)(0,1,0)[12]                    : Inf
 ARIMA(2,1,0)(0,1,0)[12]                    : 1826.147
 ARIMA(2,1,0)(0,1,1)[12]                    : 1753.334
 ARIMA(2,1,0)(0,1,2)[12]                    : 1751.264
 ARIMA(2,1,0)(1,1,0)[12]                    : 1786.157
 ARIMA(2,1,0)(1,1,1)[12]                    : 1750.285
 ARIMA(2,1,0)(1,1,2)[12]                    : 1752.695
 ARIMA(2,1,0)(2,1,0)[12]                    : 1761.837
 ARIMA(2,1,0)(2,1,1)[12]                    : Inf
 ARIMA(2,1,1)(0,1,0)[12]                    : Inf
 ARIMA(2,1,1)(0,1,1)[12]                    : 1755.279
 ARIMA(2,1,1)(0,1,2)[12]                    : 1753.209
 ARIMA(2,1,1)(1,1,0)[12]                    : 1787.894
 ARIMA(2,1,1)(1,1,1)[12]                    : 1752.197
 ARIMA(2,1,1)(2,1,0)[12]                    : 1763.432
 ARIMA(2,1,2)(0,1,0)[12]                    : Inf
 ARIMA(2,1,2)(0,1,1)[12]                    : Inf
 ARIMA(2,1,2)(1,1,0)[12]                    : 1785.314
 ARIMA(2,1,3)(0,1,0)[12]                    : Inf
 ARIMA(3,1,0)(0,1,0)[12]                    : 1825.718
 ARIMA(3,1,0)(0,1,1)[12]                    : 1754.905
 ARIMA(3,1,0)(0,1,2)[12]                    : 1752.835
 ARIMA(3,1,0)(1,1,0)[12]                    : 1786.349
 ARIMA(3,1,0)(1,1,1)[12]                    : 1751.713
 ARIMA(3,1,0)(2,1,0)[12]                    : 1762.103
 ARIMA(3,1,1)(0,1,0)[12]                    : 1827.108
 ARIMA(3,1,1)(0,1,1)[12]                    : 1755.506
 ARIMA(3,1,1)(1,1,0)[12]                    : 1787.106
 ARIMA(3,1,2)(0,1,0)[12]                    : Inf
 ARIMA(4,1,0)(0,1,0)[12]                    : 1826.598
 ARIMA(4,1,0)(0,1,1)[12]                    : 1750.317
 ARIMA(4,1,0)(1,1,0)[12]                    : 1784.775
 ARIMA(4,1,1)(0,1,0)[12]                    : Inf
 ARIMA(5,1,0)(0,1,0)[12]                    : 1828.232



 Best model: ARIMA(0,1,2)(1,1,1)[12]                    
# Mostrar AIC y BIC
aic_valueBCM <- AIC(auto_modelBCM)
bic_valueBCM <- BIC(auto_modelBCM)

cat("AIC:", aic_valueBCM, "\n")
AIC: 1748.485 
cat("BIC:", bic_valueBCM, "\n")
BIC: 1766.92 

Para ARIMA (0,1,2) que es la parte no estacional:

AR(0) : no tiene un término autorregresivo.

d=1 : una diferencia no estacional.

MA(2) : hay 2 términos de media móvil.

Para SARIMA (2,1,0)[12] que es la parte estacional con periodo 12 (mensual):

SAR(1) : un término autorregresivo estacionale.

D=1 : una diferencia estacional.

SMA(1) : hay un término estacional de media móvil.

AIC: 1748.485 y BIC: 1766.92

# --- Mostrar el modelo seleccionado ---
print(auto_modelBCM)
Series: bcm_ts 
ARIMA(0,1,2)(1,1,1)[12] 

Coefficients:
          ma1     ma2    sar1     sma1
      -0.0948  0.1528  0.2758  -0.8750
s.e.   0.0597  0.0627  0.1001   0.0861

sigma^2 = 20.68:  log likelihood = -869.24
AIC=1748.48   AICc=1748.69   BIC=1766.92
# graficar la serie temporal
TSstudio::ts_plot(bcm_ts)
# --- Dejar que auto.arima() determine d y D automáticamente ---
# Al omitir 'd' y 'D', la función usará pruebas estadísticas.
# 'trace=TRUE' nos mostrará lo que está haciendo.



# R encuentra el ARIMA óptimo de manera totalmente automática, sin que tengamoa  que especificar d ni D.


auto_model_fully_automaticBCM2 <- auto.arima(bcm_ts,
                         stepwise = FALSE, 
                         approximation = FALSE, 
                         trace = TRUE)

 ARIMA(0,0,0)(0,1,0)[12]                    : 2165.51
 ARIMA(0,0,0)(0,1,0)[12] with drift         : 2167.014
 ARIMA(0,0,0)(0,1,1)[12]                    : 2137.583
 ARIMA(0,0,0)(0,1,1)[12] with drift         : 2139.187
 ARIMA(0,0,0)(0,1,2)[12]                    : 2138.697
 ARIMA(0,0,0)(0,1,2)[12] with drift         : 2140.346
 ARIMA(0,0,0)(1,1,0)[12]                    : 2142.49
 ARIMA(0,0,0)(1,1,0)[12] with drift         : 2144
 ARIMA(0,0,0)(1,1,1)[12]                    : Inf
 ARIMA(0,0,0)(1,1,1)[12] with drift         : Inf
 ARIMA(0,0,0)(1,1,2)[12]                    : Inf
 ARIMA(0,0,0)(1,1,2)[12] with drift         : Inf
 ARIMA(0,0,0)(2,1,0)[12]                    : 2141.364
 ARIMA(0,0,0)(2,1,0)[12] with drift         : 2142.94
 ARIMA(0,0,0)(2,1,1)[12]                    : Inf
 ARIMA(0,0,0)(2,1,1)[12] with drift         : Inf
 ARIMA(0,0,0)(2,1,2)[12]                    : Inf
 ARIMA(0,0,0)(2,1,2)[12] with drift         : Inf
 ARIMA(0,0,1)(0,1,0)[12]                    : 1980.955
 ARIMA(0,0,1)(0,1,0)[12] with drift         : 1982.604
 ARIMA(0,0,1)(0,1,1)[12]                    : 1939.309
 ARIMA(0,0,1)(0,1,1)[12] with drift         : 1941.058
 ARIMA(0,0,1)(0,1,2)[12]                    : 1938.749
 ARIMA(0,0,1)(0,1,2)[12] with drift         : 1940.413
 ARIMA(0,0,1)(1,1,0)[12]                    : 1949.286
 ARIMA(0,0,1)(1,1,0)[12] with drift         : 1950.93
 ARIMA(0,0,1)(1,1,1)[12]                    : Inf
 ARIMA(0,0,1)(1,1,1)[12] with drift         : Inf
 ARIMA(0,0,1)(1,1,2)[12]                    : Inf
 ARIMA(0,0,1)(1,1,2)[12] with drift         : Inf
 ARIMA(0,0,1)(2,1,0)[12]                    : 1945.455
 ARIMA(0,0,1)(2,1,0)[12] with drift         : 1947.167
 ARIMA(0,0,1)(2,1,1)[12]                    : Inf
 ARIMA(0,0,1)(2,1,1)[12] with drift         : Inf
 ARIMA(0,0,1)(2,1,2)[12]                    : Inf
 ARIMA(0,0,1)(2,1,2)[12] with drift         : Inf
 ARIMA(0,0,2)(0,1,0)[12]                    : 1911.418
 ARIMA(0,0,2)(0,1,0)[12] with drift         : 1913.036
 ARIMA(0,0,2)(0,1,1)[12]                    : 1858.794
 ARIMA(0,0,2)(0,1,1)[12] with drift         : 1860.53
 ARIMA(0,0,2)(0,1,2)[12]                    : 1852.201
 ARIMA(0,0,2)(0,1,2)[12] with drift         : Inf
 ARIMA(0,0,2)(1,1,0)[12]                    : 1879.928
 ARIMA(0,0,2)(1,1,0)[12] with drift         : 1881.553
 ARIMA(0,0,2)(1,1,1)[12]                    : Inf
 ARIMA(0,0,2)(1,1,1)[12] with drift         : Inf
 ARIMA(0,0,2)(1,1,2)[12]                    : Inf
 ARIMA(0,0,2)(1,1,2)[12] with drift         : Inf
 ARIMA(0,0,2)(2,1,0)[12]                    : 1867.572
 ARIMA(0,0,2)(2,1,0)[12] with drift         : 1869.267
 ARIMA(0,0,2)(2,1,1)[12]                    : Inf
 ARIMA(0,0,2)(2,1,1)[12] with drift         : Inf
 ARIMA(0,0,3)(0,1,0)[12]                    : 1853.968
 ARIMA(0,0,3)(0,1,0)[12] with drift         : 1855.71
 ARIMA(0,0,3)(0,1,1)[12]                    : 1795.99
 ARIMA(0,0,3)(0,1,1)[12] with drift         : 1797.8
 ARIMA(0,0,3)(0,1,2)[12]                    : 1791.783
 ARIMA(0,0,3)(0,1,2)[12] with drift         : 1793.159
 ARIMA(0,0,3)(1,1,0)[12]                    : 1819.153
 ARIMA(0,0,3)(1,1,0)[12] with drift         : 1820.877
 ARIMA(0,0,3)(1,1,1)[12]                    : Inf
 ARIMA(0,0,3)(1,1,1)[12] with drift         : Inf
 ARIMA(0,0,3)(2,1,0)[12]                    : 1802.793
 ARIMA(0,0,3)(2,1,0)[12] with drift         : 1804.594
 ARIMA(0,0,4)(0,1,0)[12]                    : 1843.343
 ARIMA(0,0,4)(0,1,0)[12] with drift         : 1845.136
 ARIMA(0,0,4)(0,1,1)[12]                    : 1774.542
 ARIMA(0,0,4)(0,1,1)[12] with drift         : 1776.405
 ARIMA(0,0,4)(1,1,0)[12]                    : 1803.21
 ARIMA(0,0,4)(1,1,0)[12] with drift         : 1805.001
 ARIMA(0,0,5)(0,1,0)[12]                    : 1807.955
 ARIMA(0,0,5)(0,1,0)[12] with drift         : 1809.741
 ARIMA(1,0,0)(0,1,0)[12]                    : 1818.879
 ARIMA(1,0,0)(0,1,0)[12] with drift         : 1820.684
 ARIMA(1,0,0)(0,1,1)[12]                    : 1748.094
 ARIMA(1,0,0)(0,1,1)[12] with drift         : 1749.904
 ARIMA(1,0,0)(0,1,2)[12]                    : 1745.401
 ARIMA(1,0,0)(0,1,2)[12] with drift         : 1747.103
 ARIMA(1,0,0)(1,1,0)[12]                    : 1778.993
 ARIMA(1,0,0)(1,1,0)[12] with drift         : 1780.778
 ARIMA(1,0,0)(1,1,1)[12]                    : Inf
 ARIMA(1,0,0)(1,1,1)[12] with drift         : Inf
 ARIMA(1,0,0)(1,1,2)[12]                    : Inf
 ARIMA(1,0,0)(1,1,2)[12] with drift         : Inf
 ARIMA(1,0,0)(2,1,0)[12]                    : 1758.674
 ARIMA(1,0,0)(2,1,0)[12] with drift         : 1760.494
 ARIMA(1,0,0)(2,1,1)[12]                    : Inf
 ARIMA(1,0,0)(2,1,1)[12] with drift         : Inf
 ARIMA(1,0,0)(2,1,2)[12]                    : Inf
 ARIMA(1,0,0)(2,1,2)[12] with drift         : Inf
 ARIMA(1,0,1)(0,1,0)[12]                    : 1818.826
 ARIMA(1,0,1)(0,1,0)[12] with drift         : 1820.633
 ARIMA(1,0,1)(0,1,1)[12]                    : 1749.986
 ARIMA(1,0,1)(0,1,1)[12] with drift         : 1751.804
 ARIMA(1,0,1)(0,1,2)[12]                    : 1747.37
 ARIMA(1,0,1)(0,1,2)[12] with drift         : 1749.089
 ARIMA(1,0,1)(1,1,0)[12]                    : 1779.892
 ARIMA(1,0,1)(1,1,0)[12] with drift         : 1781.679
 ARIMA(1,0,1)(1,1,1)[12]                    : Inf
 ARIMA(1,0,1)(1,1,1)[12] with drift         : Inf
 ARIMA(1,0,1)(1,1,2)[12]                    : Inf
 ARIMA(1,0,1)(1,1,2)[12] with drift         : Inf
 ARIMA(1,0,1)(2,1,0)[12]                    : 1759.698
 ARIMA(1,0,1)(2,1,0)[12] with drift         : 1761.517
 ARIMA(1,0,1)(2,1,1)[12]                    : Inf
 ARIMA(1,0,1)(2,1,1)[12] with drift         : Inf
 ARIMA(1,0,2)(0,1,0)[12]                    : 1813.474
 ARIMA(1,0,2)(0,1,0)[12] with drift         : 1815.292
 ARIMA(1,0,2)(0,1,1)[12]                    : 1741.649
 ARIMA(1,0,2)(0,1,1)[12] with drift         : 1743.483
 ARIMA(1,0,2)(0,1,2)[12]                    : 1738.639
 ARIMA(1,0,2)(0,1,2)[12] with drift         : 1740.325
 ARIMA(1,0,2)(1,1,0)[12]                    : 1775.036
 ARIMA(1,0,2)(1,1,0)[12] with drift         : 1776.84
 ARIMA(1,0,2)(1,1,1)[12]                    : 1737.597
 ARIMA(1,0,2)(1,1,1)[12] with drift         : Inf
 ARIMA(1,0,2)(2,1,0)[12]                    : 1749.464
 ARIMA(1,0,2)(2,1,0)[12] with drift         : 1751.312
 ARIMA(1,0,3)(0,1,0)[12]                    : 1810.279
 ARIMA(1,0,3)(0,1,0)[12] with drift         : 1812.139
 ARIMA(1,0,3)(0,1,1)[12]                    : 1739.679
 ARIMA(1,0,3)(0,1,1)[12] with drift         : 1741.558
 ARIMA(1,0,3)(1,1,0)[12]                    : 1771.314
 ARIMA(1,0,3)(1,1,0)[12] with drift         : 1773.162
 ARIMA(1,0,4)(0,1,0)[12]                    : 1809.896
 ARIMA(1,0,4)(0,1,0)[12] with drift         : 1811.775
 ARIMA(2,0,0)(0,1,0)[12]                    : 1818.1
 ARIMA(2,0,0)(0,1,0)[12] with drift         : 1819.902
 ARIMA(2,0,0)(0,1,1)[12]                    : 1749.914
 ARIMA(2,0,0)(0,1,1)[12] with drift         : 1751.729
 ARIMA(2,0,0)(0,1,2)[12]                    : 1747.323
 ARIMA(2,0,0)(0,1,2)[12] with drift         : 1749.044
 ARIMA(2,0,0)(1,1,0)[12]                    : 1779.514
 ARIMA(2,0,0)(1,1,0)[12] with drift         : 1781.296
 ARIMA(2,0,0)(1,1,1)[12]                    : Inf
 ARIMA(2,0,0)(1,1,1)[12] with drift         : Inf
 ARIMA(2,0,0)(1,1,2)[12]                    : Inf
 ARIMA(2,0,0)(1,1,2)[12] with drift         : Inf
 ARIMA(2,0,0)(2,1,0)[12]                    : Inf
 ARIMA(2,0,0)(2,1,0)[12] with drift         : Inf
 ARIMA(2,0,0)(2,1,1)[12]                    : Inf
 ARIMA(2,0,0)(2,1,1)[12] with drift         : Inf
 ARIMA(2,0,1)(0,1,0)[12]                    : 1819.157
 ARIMA(2,0,1)(0,1,0)[12] with drift         : 1820.971
 ARIMA(2,0,1)(0,1,1)[12]                    : 1750.866
 ARIMA(2,0,1)(0,1,1)[12] with drift         : 1752.687
 ARIMA(2,0,1)(0,1,2)[12]                    : 1748.252
 ARIMA(2,0,1)(0,1,2)[12] with drift         : 1749.983
 ARIMA(2,0,1)(1,1,0)[12]                    : 1780.762
 ARIMA(2,0,1)(1,1,0)[12] with drift         : 1782.557
 ARIMA(2,0,1)(1,1,1)[12]                    : Inf
 ARIMA(2,0,1)(1,1,1)[12] with drift         : Inf
 ARIMA(2,0,1)(2,1,0)[12]                    : 1759.722
 ARIMA(2,0,1)(2,1,0)[12] with drift         : 1761.544
 ARIMA(2,0,2)(0,1,0)[12]                    : 1806.942
 ARIMA(2,0,2)(0,1,0)[12] with drift         : 1808.792
 ARIMA(2,0,2)(0,1,1)[12]                    : 1739.264
 ARIMA(2,0,2)(0,1,1)[12] with drift         : 1741.145
 ARIMA(2,0,2)(1,1,0)[12]                    : 1771.202
 ARIMA(2,0,2)(1,1,0)[12] with drift         : 1773.046
 ARIMA(2,0,3)(0,1,0)[12]                    : Inf
 ARIMA(2,0,3)(0,1,0)[12] with drift         : Inf
 ARIMA(3,0,0)(0,1,0)[12]                    : 1815.614
 ARIMA(3,0,0)(0,1,0)[12] with drift         : 1817.433
 ARIMA(3,0,0)(0,1,1)[12]                    : 1742.887
 ARIMA(3,0,0)(0,1,1)[12] with drift         : 1744.73
 ARIMA(3,0,0)(0,1,2)[12]                    : 1739.411
 ARIMA(3,0,0)(0,1,2)[12] with drift         : 1741.056
 ARIMA(3,0,0)(1,1,0)[12]                    : 1777.066
 ARIMA(3,0,0)(1,1,0)[12] with drift         : 1778.873
 ARIMA(3,0,0)(1,1,1)[12]                    : Inf
 ARIMA(3,0,0)(1,1,1)[12] with drift         : Inf
 ARIMA(3,0,0)(2,1,0)[12]                    : 1752.327
 ARIMA(3,0,0)(2,1,0)[12] with drift         : 1754.182
 ARIMA(3,0,1)(0,1,0)[12]                    : Inf
 ARIMA(3,0,1)(0,1,0)[12] with drift         : Inf
 ARIMA(3,0,1)(0,1,1)[12]                    : 1742.859
 ARIMA(3,0,1)(0,1,1)[12] with drift         : 1744.731
 ARIMA(3,0,1)(1,1,0)[12]                    : 1774.929
 ARIMA(3,0,1)(1,1,0)[12] with drift         : 1776.766
 ARIMA(3,0,2)(0,1,0)[12]                    : Inf
 ARIMA(3,0,2)(0,1,0)[12] with drift         : Inf
 ARIMA(4,0,0)(0,1,0)[12]                    : 1807.017
 ARIMA(4,0,0)(0,1,0)[12] with drift         : 1808.877
 ARIMA(4,0,0)(0,1,1)[12]                    : 1740.177
 ARIMA(4,0,0)(0,1,1)[12] with drift         : 1742.063
 ARIMA(4,0,0)(1,1,0)[12]                    : 1770.361
 ARIMA(4,0,0)(1,1,0)[12] with drift         : 1772.212
 ARIMA(4,0,1)(0,1,0)[12]                    : 1808.084
 ARIMA(4,0,1)(0,1,0)[12] with drift         : 1809.953
 ARIMA(5,0,0)(0,1,0)[12]                    : 1808.602
 ARIMA(5,0,0)(0,1,0)[12] with drift         : 1810.477



 Best model: ARIMA(1,0,2)(1,1,1)[12]                    
# Mostrar AIC y BIC
aic_valueBCM2 <- AIC(auto_model_fully_automaticBCM2)
bic_valueBCM2 <- BIC(auto_model_fully_automaticBCM2)

cat("AIC:", aic_valueBCM2, "\n")  # Cat() función principal es imprimir texto y valores
AIC: 1737.306 
cat("BIC:", bic_valueBCM2, "\n")
BIC: 1759.448 

Parte no estacional (1,0,2)

AR(1) : la serie depende de un valore anterior.

d=0 : no se aplicó ninguna diferencia para lograr estacionariedad.

MA(2) : la serie depende también de dos errores aleatorios en el período anterior.

Parte estacional (1,1,1) [12]

SAR(1) y D=1 : hay una parte autorregresiva estacional y una diferencia estacional.

SMA(1) : hay una media móvil estacional de orden 1 o que depende de un error 12 períodos antes.

[12] : el período estacional es 12 (lo usual en datos mensuales).

El valor de AIC es de 1737.306 y BIC es de 1759.448

# --- Mostrar el modelo seleccionado ---

print(auto_model_fully_automaticBCM2)
Series: bcm_ts 
ARIMA(1,0,2)(1,1,1)[12] 

Coefficients:
         ar1      ma1     ma2    sar1     sma1
      0.8387  -0.0212  0.2063  0.2786  -0.8850
s.e.  0.0409   0.0677  0.0624  0.0894   0.0719

sigma^2 = 19.32:  log likelihood = -862.65
AIC=1737.31   AICc=1737.6   BIC=1759.45
modeloBCM <- tso(bcm_ts, maxit.oloop = 10)
modeloBCM
Series: bcm_ts 
Regression with ARIMA(1,0,2)(1,1,1)[12] errors 

Coefficients:
         ar1      ma1     ma2    sar1     sma1    AO100    LS132    TC135
      0.8710  -0.0937  0.1911  0.2104  -0.7481  13.4701  16.2717  17.6293
s.e.  0.0424   0.0691  0.0678  0.1606   0.1349   2.7663   3.8430   3.5365

sigma^2 = 16.09:  log likelihood = -830.96
AIC=1679.92   AICc=1680.55   BIC=1713.13

Outliers:
  type ind    time coefhat tstat
1   AO 100 2008:04   13.47 4.869
2   LS 132 2010:12   16.27 4.234
3   TC 135 2011:03   17.63 4.985

La fue ajustada con un modelo SARIMA estacional que es mensual.

El modelo detectó un fuerte componente autoregresivo (AR1=0.87) y un efecto estacional de media móvil (sma1=-0.75).

Identificó tres outliers importantes: uno puntual (impulso)(AO100), un cambio de nivel permanente (escalon) (LS132) y un cambio temporal (escalon) (TC135).

plot(modeloBCM)

Este gráfico muestra que entre 2009 y 2012 hubo valores con anomalias importantes en el comercio de mercancías, que generaron un pico muy por encima del patrón estacional normal. El modelo los identifica y ajusta, revelando que el resto de la serie sigue un ciclo bastante regular y más estable.

En la parte de 2008–2012 aparecen tres puntos rojos, que corresponden a valores extremadamente altos respecto al comportamiento habitual de la serie.

La línea azul suaviza estos picos, mostrando cómo se vería la serie si se eliminara el impacto de esos valores atípicos.

# Crear una secuencia de números de fila para la condición
filasBCM <- 1:nrow(bcm_data)

# AO100: efecto puntual solo en la observación 100
bcm_data$AO100 <- ifelse(filasBCM == 100, 1, 0)

# LS132: cambio permanente a partir de la observación 132
bcm_data$LS132 <- ifelse(filasBCM >= 132, 1, 0)

# TC135: cambio transitorio que decae (ejemplo con decaimiento geométrico 0.7)
bcm_data$TC135 <- ifelse(filasBCM >= 135, 0.7^(filasBCM - 135), 0)
print(head(bcm_data))
# A tibble: 6 × 8
  Concepto   BCM YEAR_ MONTH_ DATE_    AO100 LS132 TC135
  <chr>    <dbl> <dbl>  <dbl> <chr>    <dbl> <dbl> <dbl>
1 2000-01   48.3  2000      1 JAN 2000     0     0     0
2 2000-02   56.3  2000      2 FEB 2000     0     0     0
3 2000-03   40.9  2000      3 MAR 2000     0     0     0
4 2000-04   46.8  2000      4 APR 2000     0     0     0
5 2000-05   34.0  2000      5 MAY 2000     0     0     0
6 2000-06   25.7  2000      6 JUN 2000     0     0     0
library(forecast)

serie1BCM=ts(bcm_data,start = c(2000,1),frequency = 12)
library(tsoutliers)
plot(serie1BCM)

Un outlier aditivo (AO): un valor anómalo puntual.

Un cambio de nivel (LS): la serie se elevó de forma permanente después de 2011.

Un cambio transitorio (TC): un efecto fuerte pero de corta duración, que se disipó.

Entre 2010–2012 ocurrieron eventos extraordinarios que generaron: un pico aislado (AO), un salto que se corrigió rápido (TC), y un aumento de nivel que se mantuvo después (LS).

Tras ajustar estos efectos, la serie revela un patrón estacional más estable.

# Modelo llamado modeloBCM con ARIMA (1,0,2) (1,1,1) con AIC= 1679.92   BIC= 1713.13

#Interviniendo el outler 17
modelo1bcm=Arima(bcm_data$BCM,
              order = c(1,0,2),
              seasonal=list(order=c(1,1,1),period=12),
              xreg=cbind(bcm_data$AO100))

#Interviniendo el outler 71
modelo2bcm=Arima(bcm_data$BCM,
              order = c(1,0,2),
              seasonal=list(order=c(1,1,1),period=12),
              xreg=cbind(bcm_data$LS132))

#Interviniendo el outler 169
modelo3bcm=Arima(bcm_data$BCM,
              order = c(1,0,2),
              seasonal=list(order=c(1,1,1),period=12),
              xreg=cbind(bcm_data$TC135))

#Interviniendo el outler 17, 71,
modelo4bcm=Arima(bcm_data$BCM,
              order = c(1,0,2),
              seasonal=list(order=c(1,1,1),period=12),
              xreg=cbind(bcm_data$AO100, bcm_data$LS132))

#Interviniendo el outler 71, 169,
modelo5bcm=Arima(bcm_data$BCM,
              order = c(1,0,2),
              seasonal=list(order=c(1,1,1),period=12),
              xreg=cbind(bcm_data$LS132, bcm_data$TC135))

#Interviniendo el outler 71, 169,
modelo6bcm=Arima(bcm_data$BCM,
              order = c(1,0,2),
              seasonal=list(order=c(1,1,1),period=12),
              xreg=cbind(bcm_data$AO100, bcm_data$LS132, bcm_data$TC135))
modelo1bcm
Series: bcm_data$BCM 
Regression with ARIMA(1,0,2)(1,1,1)[12] errors 

Coefficients:
         ar1      ma1     ma2    sar1     sma1     xreg
      0.8383  -0.0093  0.2350  0.2682  -0.8600  13.1417
s.e.  0.0409   0.0665  0.0628  0.1107   0.0946   2.9132

sigma^2 = 18.26:  log likelihood = -852.96
AIC=1719.92   AICc=1720.31   BIC=1745.76
modelo2bcm
Series: bcm_data$BCM 
Regression with ARIMA(1,0,2)(1,1,1)[12] errors 

Coefficients:
         ar1      ma1     ma2    sar1     sma1     xreg
      0.8672  -0.0511  0.1958  0.1437  -0.7649  16.2192
s.e.  0.0416   0.0669  0.0652  0.1152   0.0955   4.0284

sigma^2 = 18.57:  log likelihood = -854.1
AIC=1722.19   AICc=1722.58   BIC=1748.02
modelo3bcm
Series: bcm_data$BCM 
Regression with ARIMA(1,0,2)(1,1,1)[12] errors 

Coefficients:
         ar1      ma1     ma2    sar1     sma1     xreg
      0.8299  -0.0426  0.1681  0.3616  -0.9087  18.6842
s.e.  0.0442   0.0706  0.0643  0.0814   0.0630   3.7836

sigma^2 = 17.88:  log likelihood = -850.89
AIC=1715.79   AICc=1716.18   BIC=1741.62
modelo4bcm
Series: bcm_data$BCM 
Regression with ARIMA(1,0,2)(1,1,1)[12] errors 

Coefficients:
         ar1      ma1     ma2    sar1     sma1    xreg1    xreg2
      0.8589  -0.0277  0.2327  0.0422  -0.6666  13.9046  16.9422
s.e.  0.0420   0.0661  0.0666  0.1302   0.1153   2.8423   3.7387

sigma^2 = 17.36:  log likelihood = -842.84
AIC=1701.68   AICc=1702.18   BIC=1731.21
modelo5bcm
Series: bcm_data$BCM 
Regression with ARIMA(1,0,2)(1,1,1)[12] errors 

Coefficients:
         ar1      ma1     ma2    sar1     sma1    xreg1    xreg2
      0.8778  -0.1106  0.1566  0.2700  -0.8130  15.7695  18.2142
s.e.  0.0429   0.0700  0.0683  0.1094   0.0839   4.0006   3.6503

sigma^2 = 17.22:  log likelihood = -842.35
AIC=1700.69   AICc=1701.19   BIC=1730.22
modelo6bcm
Series: bcm_data$BCM 
Regression with ARIMA(1,0,2)(1,1,1)[12] errors 

Coefficients:
         ar1      ma1     ma2    sar1     sma1    xreg1    xreg2    xreg3
      0.8710  -0.0937  0.1911  0.2104  -0.7481  13.4701  16.2717  17.6293
s.e.  0.0424   0.0691  0.0678  0.1606   0.1349   2.7663   3.8430   3.5365

sigma^2 = 16.09:  log likelihood = -830.96
AIC=1679.92   AICc=1680.55   BIC=1713.13

Al tener los 6 modelos creados para analizar cual modelo es el menor valor de AIC y BIC concluimos que el mejor modelo es “modelo6” con un valor de AIC = 1679.92 y BIC= 1713.13, estos valores de ese modelo es el menor de todos.

library(lmtest)
Warning: package 'lmtest' was built under R version 4.3.2
Loading required package: zoo
Warning: package 'zoo' was built under R version 4.3.2

Attaching package: 'zoo'
The following objects are masked from 'package:base':

    as.Date, as.Date.numeric
coeftest(modelo6bcm)

z test of coefficients:

       Estimate Std. Error z value  Pr(>|z|)    
ar1    0.871002   0.042435 20.5257 < 2.2e-16 ***
ma1   -0.093728   0.069120 -1.3560  0.175091    
ma2    0.191118   0.067766  2.8203  0.004798 ** 
sar1   0.210441   0.160595  1.3104  0.190067    
sma1  -0.748068   0.134859 -5.5470 2.906e-08 ***
xreg1 13.470066   2.766349  4.8693 1.120e-06 ***
xreg2 16.271670   3.842955  4.2342 2.294e-05 ***
xreg3 17.629266   3.536540  4.9849 6.200e-07 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Los coeficientes que son más relevantes son: ar1, ma2, sma1 que estructuran lo que es la dinámica temporal. xreg1, xreg2, xreg3 explican variaciones adicionales que son significativas. ma1 y sar1 no son significativos.

checkresiduals(modelo6bcm)


    Ljung-Box test

data:  Residuals from Regression with ARIMA(1,0,2)(1,1,1)[12] errors
Q* = 18.853, df = 5, p-value = 0.002047

Model df: 5.   Total lags used: 10

H0: Los residuos son independientes (ruido blanco).

H1: Los residuos muestran autocorrelación significativa.

Si p_value > 0.05, no rechazamos H0.

Como mi p_value fue de 0.002047, esto es menor que 0.05 por lo que rechazamos la hipotesis nula por lo que los residuos muestran autocorrelación significativa.

Los residuos cumplen las condiciones de un buen modelo:

No presentan autocorrelación es decir que la estructura de la serie fue bien capturada.

Son aproximadamente normales por lo que se puede confiar en las inferencias y pronósticos.

Solo se observan leves desviaciones en las colas, pero no afectan de manera importante la validez del modelo.

# resumen de métricas de desempeño del modelo ARIMA aplicado al conjunto de entrenamiento

accuracy(modelo6bcm)
                    ME     RMSE      MAE       MPE     MAPE      MASE
Training set -0.384886 3.878805 2.897928 -5.795887 18.98328 0.6149693
                    ACF1
Training set -0.01060677
library(forecast)

xreg_futurebcm <- cbind(AO100 = bcm_data$AO100, LS132 = bcm_data$LS132,TC135 = bcm_data$TC135)

prediccionesbcm <- forecast(modelo6bcm, h = 12, xreg = xreg_futurebcm)
Warning in forecast.forecast_ARIMA(modelo6bcm, h = 12, xreg = xreg_futurebcm):
xreg contains different column names from the xreg used in training. Please
check that the regressors are in the same order.
prediccionesbcm
    Point Forecast         Lo 80       Hi 80       Lo 95     Hi 95
309     -5.1968448 -1.033744e+01 -0.05625256 -13.0587021  2.665013
310     -8.6883458 -1.519918e+01 -2.17751634 -18.6458002  1.269109
311    -10.6657260 -1.855917e+01 -2.77228538 -22.7377018  1.406250
312     -8.4284968 -1.722709e+01  0.37009422 -21.8847805  5.027787
313     -1.9202383 -1.134772e+01  7.50724365 -16.3383277 12.497851
314      3.0402215 -6.837692e+00 12.91813460 -12.0667429 18.147186
315     10.1956760 -1.070215e-02 20.40205413  -5.4136324 25.804984
316      7.5101164 -2.938564e+00 17.95879699  -8.4697616 23.489994
317      8.4804950 -2.148323e+00 19.10931294  -7.7748794 24.735869
318      9.5680672 -1.195400e+00 20.33153458  -6.8932355 26.029370
319      7.1325573 -3.731948e+00 17.99706251  -9.4832696 23.748384
320     -1.0561449 -1.199668e+01  9.88438973 -17.7882487 15.675959
321     -5.8086222 -1.729486e+01  5.67761656 -23.3753084 11.758064
322     -8.6271984 -2.045556e+01  3.20116798 -26.7171238  9.462727
323    -10.4943596 -2.267643e+01  1.68771418 -29.1252336  8.136514
324     -8.0377006 -2.048141e+01  4.40600633 -27.0687080 10.993307
325     -1.5799906 -1.421857e+01 11.05859033 -20.9090323 17.749051
326      3.4079987 -9.376441e+00 16.19243857 -16.1441148 22.960112
327      9.5340490 -3.359945e+00 22.42804331 -10.1856136 29.253712
328      7.0977266 -5.878764e+00 20.07421690 -12.7481026 26.943556
329      8.3359029 -4.702824e+00 21.37463014 -11.6051095 28.276915
330      9.0800047 -4.005741e+00 22.16575021 -10.9329160 29.092925
331      6.7095717 -6.411732e+00 19.83087495 -13.3577300 26.776873
332     -0.9325395 -1.408075e+01 12.21567531 -21.0409989 19.175920
333     -5.7592324 -1.914820e+01  7.62973225 -26.2358868 14.717422
334     -8.4591767 -2.200165e+01  5.08329851 -29.1706052 12.252252
335    -10.3231578 -2.402966e+01  3.38333996 -31.2854371 10.639122
336     -7.8377545 -2.166739e+01  5.99188039 -28.9883560 13.312847
337     -1.4058660 -1.532819e+01 12.51645979 -22.6982258 19.886494
338      3.5746915 -1.041754e+01 17.56692719 -17.8245863 24.973969
339      9.4725943 -4.572446e+00 23.51763461 -12.0074413 30.952630
340      7.0786883 -7.006280e+00 21.16365656 -14.4624118 28.619788
341      8.3644811 -5.750703e+00 22.47966514 -13.2228300 29.951792
342      9.0286911 -5.109373e+00 23.16675512 -12.5936119 30.650994
343      6.6653231 -7.490074e+00 20.82072021 -14.9834885 28.314135
344     -0.8675378 -1.503607e+01 13.30099483 -22.5364384 20.801363
345     -5.7148782 -2.005383e+01  8.62407564 -27.6444158 16.214659
346     -8.3942384 -2.284117e+01  6.05269395 -30.4889148 13.700438
347    -10.2613660 -2.482694e+01  4.30421152 -32.5374945 12.014762
348     -7.7732373 -2.242818e+01  6.88170899 -30.1860435 14.639569
349     -1.3496773 -1.607206e+01 13.37270615 -23.8656199 21.166265
350      3.6267948 -1.114654e+01 18.40013395 -18.9670776 26.220667
351      9.4744900 -5.337389e+00 24.28636941 -13.1783248 32.127305
352      7.0875973 -7.753454e+00 21.92864838 -15.6098316 29.785026
353      8.3817445 -6.481399e+00 23.24488828 -14.3494723 31.112961
354      9.0276909 -5.852192e+00 23.90757332 -13.7291254 31.784507
355      6.6645457 -8.228023e+00 21.55711427 -16.1116724 29.440764
356     -0.8464254 -1.574861e+01 14.05576023 -23.6373515 21.944501
357     -5.6990698 -2.075036e+01  9.35222342 -28.7180364 17.319897
358     -8.3749334 -2.352040e+01  6.77053578 -31.5379298 14.788063
359    -10.2434506 -2.549358e+01  5.00668146 -33.5665150 13.079614
360     -7.7553820 -2.308444e+01  7.57367531 -31.1991521 15.688388
361     -1.3341266 -1.672279e+01 14.05453683 -24.8690565 22.200803
362      3.6410051 -1.179272e+01 19.07473500 -19.9628478 27.244858
363      9.4777159 -5.990116e+00 24.94554759 -14.1782913 33.133723
364      7.0919344 -8.401718e+00 22.58558724 -16.6035627 30.787432
365      8.3875221 -7.125691e+00 23.90073525 -15.3378900 32.112934
366      9.0293484 -6.498688e+00 24.55738453 -14.7187334 32.777430
367      6.6660092 -8.873263e+00 22.20528118 -17.0992565 30.431275
368     -0.8405653 -1.638836e+01 14.70722533 -24.6188591 22.937729
369     -5.6945087 -2.138213e+01  9.99311602 -29.6866604 18.297643
370     -8.3697958 -2.414568e+01  7.40609210 -32.4969342 15.757343
371    -10.2387441 -2.611309e+01  5.63559750 -34.5164545 14.038966
372     -7.7508089 -2.369944e+01  8.19781865 -32.1421299 16.640512
373     -1.3301437 -1.733490e+01 14.67461044 -25.8073029 23.147016
374      3.6446143 -1.240259e+01 19.69181776 -20.8974655 28.186694
375      9.4789337 -6.600399e+00 25.55826634 -15.1122834 34.070151
376      7.0933166 -9.010348e+00 23.19698108 -17.5351129 31.721746
377      8.3891468 -7.732952e+00 24.51124606 -16.2674762 33.045770
378      9.0300534 -7.106017e+00 25.16612401 -15.6479370 33.708044
379      6.6666273 -9.480035e+00 22.81328921 -18.0275610 31.360816
380     -0.8390619 -1.699375e+01 15.31563029 -25.5455316 23.867408
381     -5.6933136 -2.198189e+01 10.59526595 -30.6045462 19.217919
382     -8.3685096 -2.474161e+01  8.00459500 -33.4090123 16.671993
383    -10.2375751 -2.670508e+01  6.22993214 -35.4224541 14.947304
384     -7.7496910 -2.428846e+01  8.78907480 -33.0435507 17.544169
385     -1.3291701 -1.792179e+01 15.26345151 -26.7053950 24.047055
386      3.6454918 -1.298787e+01 20.27885458 -21.7930413 29.084025
387      9.4792927 -7.184912e+00 26.14349715 -16.0064086 34.964994
388      7.0936969 -9.593867e+00 23.78126116 -18.4277302 32.615124
389      8.3895667 -8.315698e+00 25.09483090 -17.1589303 33.938064
390      9.0302696 -7.688410e+00 25.74894938 -16.5387446 34.599284
391      6.6668166 -1.006203e+01 23.39566676 -18.9177520 32.251385
392     -0.8386940 -1.757526e+01 15.89786775 -26.4350565 24.757668
393     -5.6930172 -2.255868e+01 11.17264430 -31.4868206 20.100786
394     -8.3681999 -2.531539e+01  8.57899407 -34.2866964 17.550297
395    -10.2372951 -2.727560e+01  6.80101099 -36.2951355 15.820545
396     -7.7494262 -2.485653e+01  9.35767793 -33.9124841 18.413632
397     -1.3289394 -1.848805e+01 15.83017388 -27.5715386 24.913660
398      3.6456990 -1.355277e+01 20.84416391 -22.6570834 29.948481
399      9.4793879 -7.748871e+00 26.70764682 -16.8689604 35.827736
400      7.0937940 -1.015703e+01 24.34462170 -19.2890701 33.476658
401      8.3896699 -8.878260e+00 25.65759951 -18.0193495 34.798689
402      9.0303281 -8.250565e+00 26.31122073 -17.3985166 35.459173
403      6.6668677 -1.062385e+01 23.95758816 -19.7770074 33.110743
404     -0.8386068 -1.813678e+01 16.45956580 -27.2938789 25.616665
405     -5.6929463 -2.311602e+01 11.73012714 -32.3392376 20.953345
406     -8.3681273 -2.587011e+01  9.13385629 -35.1351013 18.398847
407    -10.2372297 -2.782743e+01  7.35296790 -37.1391153 16.664656
408      5.7207016 -1.193613e+01 23.37752822 -21.2830845 32.724488
409     -1.3288859 -1.903609e+01 16.37832124 -28.4097224 25.751950
410      3.6457468 -1.409959e+01 21.39107959 -23.4933976 30.784891
411      9.4794117 -8.294790e+00 27.25361362 -17.7038845 36.662708
412      7.0938177 -1.070225e+01 24.88988995 -20.1229261 34.310562
413      8.3896944 -9.422952e+00 26.20234050 -18.8523968 35.631786
414      9.0303428 -8.794867e+00 26.85555227 -18.2309625 36.291648
415      6.6668806 -1.116785e+01 24.50161523 -20.6089923 33.942753
416     -0.8385866 -1.868054e+01 17.00337095 -28.1255059 26.448333
417     -5.6929297 -2.365600e+01 12.27013954 -33.1650734 21.779214
418     -8.3681106 -2.640772e+01  9.67150117 -35.9573159 19.221095
419    -10.2372147 -2.836242e+01  7.88798921 -37.9573219 17.482893
420     -7.7493508 -2.593922e+01 10.44051845 -35.5683551 20.069654
421     -1.3288737 -1.956765e+01 16.90990052 -29.2226719 26.564924
422      3.6457577 -1.463003e+01 21.92154633 -24.3046489 31.596164
423      9.4794174 -8.824402e+00 27.78323675 -18.5138587 37.472693
424      7.0938233 -1.123123e+01 25.41887955 -20.9319317 35.119578
425      8.3897001 -9.951451e+00 26.73085116 -19.6606697 36.440070
426      9.0303464 -9.323005e+00 27.38369826 -19.0386830 37.099376
427      6.6668837 -1.169572e+01 25.02948620 -21.4162934 34.750061
428     -0.8385820 -1.920820e+01 17.53103541 -28.9324874 27.255323
429     -5.6929259 -2.418020e+01 12.79434492 -33.9667668 22.580915
430     -8.3681068 -2.692976e+01 10.19354376 -36.7557016 20.019488
431    -10.2372113 -2.888206e+01  8.40763387 -38.7520412 18.277619
432     -7.7493476 -2.645706e+01 10.95836585 -36.3603264 20.861631
433     -1.3288710 -2.008414e+01 17.42639658 -30.0125775 27.354835
434      3.6457602 -1.514550e+01 22.43702422 -25.0929982 32.384519
435      9.4794187 -9.339108e+00 28.29794535 -19.3010342 38.259872
436      7.0938246 -1.174536e+01 25.93300760 -21.7182194 35.905869
437      8.3897015 -1.046514e+01 27.24454013 -20.4462859 37.225689
438      9.0303473 -9.836360e+00 27.89705441 -19.8237913 37.884486
439      6.6668844 -1.220882e+01 25.54259053 -22.2010169 35.534786
440     15.4330892 -3.449441e+00 34.31561948 -13.4452487 44.311427
441     10.5787451 -8.418262e+00 29.57575207 -18.4746699 39.632160
442      7.9035642 -1.116583e+01 26.97296253 -21.2605638 37.067692
443     23.6637260  4.513339e+00 42.81411299  -5.6242634 52.951715
444     20.8628097  1.651209e+00 40.07441054  -8.5187982 50.244418
445     23.5811403  4.323230e+00 42.83905086  -5.8712923 53.033573
446     25.9642693  6.671300e+00 45.25723837  -3.5417808 55.470319
447     29.9838760  1.066435e+01 49.30339970   0.4372143 59.530538
448     26.3284459  6.988801e+00 45.66809072  -3.2489885 55.905880
449     26.7354375  7.380542e+00 46.09033315  -2.8653211 56.336196
450     26.7538635  7.387406e+00 46.12032117  -2.8645775 56.372305
451     23.9548469  4.579622e+00 43.33007136  -5.6770019 53.586696
452     16.1444940 -3.237379e+00 35.52636668 -13.4975224 45.786510
453     11.0767284 -8.416689e+00 30.57014559 -18.7358804 40.889337
454      8.2521526 -1.131182e+01 27.81612429 -21.6683601 38.172665
455      6.2784716 -1.336445e+01 25.92139280 -23.7627840 36.319727
456      8.6931316 -1.100947e+01 28.39573648 -21.4394022 38.825665
457     15.0623657 -4.685397e+00 34.81012883 -15.1392318 45.263963
458     20.0011270  2.191735e-01 39.78308061 -10.2527602 50.255014
459     25.8096765  6.001824e+00 45.61752905  -4.4838199 56.103173
460     23.4065062  3.579028e+00 43.23398439  -6.9170049 53.730017
461     24.6900797  4.847726e+00 44.53243379  -5.6561821 55.036342
462     25.3221131  5.468481e+00 45.17574525  -5.0413971 55.685623
463     22.9526216  3.090438e+00 42.81480554  -7.4239674 53.329211
464     15.4429363 -4.425733e+00 35.31160553 -14.9435712 45.829444
465     10.5856381 -9.391858e+00 30.56313389 -19.9673052 41.138581
466      7.9083894 -1.213796e+01 27.95473602 -22.7498522 38.566631
467      6.0378373 -1.408557e+01 26.16124110 -24.7382530 36.813928
468      8.5246876 -1.165698e+01 28.70635417 -22.3405078 39.389883
469     14.9444549 -5.281300e+00 35.17021013 -15.9881684 45.877078
470     19.9185895 -3.405495e-01 40.17772848 -11.0650898 50.902269
471     25.7519002  5.467471e+00 46.03632891  -5.2704565 56.774257
472     23.3660628  3.062469e+00 43.66965649  -7.6856041 54.417730
473     24.6617693  4.343648e+00 44.97989032  -6.4121152 55.735654
474     25.3022958  4.973161e+00 45.63143095  -5.7884334 56.393025
475     22.9387495  2.601263e+00 43.27623647  -8.1647527 54.042252
476     15.4332258 -4.910595e+00 35.77704657 -15.6799631 46.546415
477     10.5788407 -9.871278e+00 31.02895967 -20.6969172 41.854599
478      7.9036312 -1.261375e+01 28.42101506 -23.4749995 39.282262
479      6.0345066 -1.455817e+01 26.62718504 -25.4592773 37.528291
480      8.5223562 -1.212726e+01 29.17197331 -23.0585080 40.103220
481     14.9428229 -5.749886e+00 35.63553170 -16.7039444 46.589590
482     19.9174471 -8.078934e-01 40.64278752 -11.7792259 51.614120
483     25.7511005  5.001038e+00 46.50116248  -5.9833808 57.485582
484     23.3655030  2.596706e+00 44.13430030  -8.3976314 55.128637
485     24.6613775  3.878378e+00 45.44437689  -7.1234772 56.446232
486     25.3020215  4.508254e+00 46.09578884  -6.4993013 57.103344
487     22.9385575  2.136625e+00 43.74049010  -8.8752530 54.752368
488     15.4330914 -5.375034e+00 36.24121643 -16.3901896 47.256372
489     10.5787467 -1.033332e+01 31.49080988 -21.4034941 42.560987
490      7.9035654 -1.307428e+01 28.88141233 -24.1792829 39.986414
491      6.0344605 -1.501703e+01 27.08595520 -26.1610223 38.229943
492      8.5223239 -1.258487e+01 29.62951964 -23.7583463 40.802994
493     14.9428003 -6.206555e+00 36.09215542 -17.4023472 47.287948
494     19.9174313 -1.263852e+00 41.09871452 -12.4765460 52.311409
495     25.7510894  4.545616e+00 46.95656269  -6.6798833 58.182062
496     23.3654953  2.141689e+00 44.58930181  -9.0935157 55.824506
497     24.6613721  3.423668e+00 45.89907646  -7.8188939 57.141638
498     25.3020177  4.053776e+00 46.55025960  -7.1943639 57.798399
499     22.9385548  1.682322e+00 44.19478743  -9.5700476 55.447157
500     15.4330896 -5.829203e+00 36.69538225 -17.0847810 47.950960
501     10.5787454 -1.078528e+01 31.94276679 -22.0947059 43.252197
502      7.9035645 -1.352485e+01 29.33198220 -24.8683724 40.675501
503      6.0344599 -1.546606e+01 27.53498202 -26.8477511 38.916671
504      8.5223235 -1.303274e+01 30.07738633 -24.4433004 41.487947
505     14.9428000 -6.653548e+00 36.53914795 -18.0859641 47.971564
506     19.9174310 -1.710185e+00 41.54504728 -13.1591536 52.994016
507     25.7510893  4.099782e+00 47.40239685  -7.3617282 58.863907
508     23.3654952  1.696232e+00 45.03475883  -9.7747837 56.505774
509     24.6613720  2.978496e+00 46.34424799  -8.4997252 57.822469
510     25.3020177  3.608820e+00 46.99521491  -7.8748645 58.478900
511     22.9385548  1.237531e+00 44.63957892 -10.2502975 56.127407
512     15.4330895 -6.273871e+00 37.14004957 -17.7648410 48.631020
513     10.5787453 -1.122787e+01 32.38535983 -22.7715935 43.929084
514      7.9035645 -1.396614e+01 29.77327205 -25.5432670 41.350396
515      6.0344599 -1.590590e+01 27.97482167 -27.5204279 39.589348
516      8.5223235 -1.347149e+01 30.51613529 -25.1143091 42.158956
517     14.9428000 -7.091475e+00 36.97707486 -18.7557155 48.641315
518     19.9174310 -2.147492e+00 41.98235360 -13.8279560 53.662818
519     25.7510893  3.662944e+00 47.83923414  -8.0298132 59.531992
520     23.3654952  1.259749e+00 45.47124128 -10.4423260 57.173316
521     24.6613720  2.542282e+00 46.78046183  -9.1668567 58.489601
522     25.3020177  3.172810e+00 47.43122530  -8.5416848 59.145720
523     22.9385548  8.016745e-01 45.07543515 -10.9168821 56.793992
524     15.4330895 -6.709610e+00 37.57578896 -18.4312469 49.297426
525     10.5787453 -1.166166e+01 32.81914684 -23.4350135 44.592504
526      7.9035645 -1.439870e+01 30.20583192 -26.2048102 42.011939
527      6.0344599 -1.633710e+01 28.40601546 -28.1798819 40.248802
528      8.5223235 -1.390165e+01 30.94630131 -25.7721912 42.816838
529     14.9428000 -7.520866e+00 37.40646604 -19.4124126 49.298013
530     19.9174310 -2.576298e+00 42.41115975 -14.4837584 54.318620
531     25.7510893  3.234580e+00 48.26759804  -8.6849393 60.187118
532     23.3654952  8.317198e-01 45.89927059 -11.0969404 57.827931
533     24.6613720  2.114506e+00 47.20823782  -9.8210836 59.143828
534     25.3020177  2.745226e+00 47.85880942  -9.1956183 59.799654
535     22.9385548  3.742357e-01 45.50287387 -11.5705932 57.447703
536     15.4330895 -7.136938e+00 38.00311748 -19.0847895 49.950969
537     10.5787453 -1.208714e+01 33.24463343 -24.0857391 45.243230
538      7.9035645 -1.482303e+01 30.63016028 -26.8537644 42.660893
539      6.0344599 -1.676013e+01 28.82905404 -28.8268635 40.895783
540      8.5223235 -1.432372e+01 31.36836920 -26.4176884 43.462335
541     14.9428000 -7.942202e+00 37.82780198 -20.0567904 49.942390
542     19.9174310 -2.997081e+00 42.83194293 -15.1272907 54.962153
543     25.7510893  2.814215e+00 48.68796332  -9.3278325 60.830011
544     23.3654952  4.116707e-01 46.31931966 -11.7393500 58.470340
545     24.6613720  1.694697e+00 47.62804747 -10.4631271 59.785871
546     25.3020177  2.325598e+00 48.27843771  -9.8373844 60.441420
547     22.9385548 -4.525511e-02 45.92236473 -12.2121491 58.089259
548     15.4330895 -7.556325e+00 38.42250417 -19.7261861 50.592365
549     10.5787453 -1.250479e+01 33.66227857 -24.7244722 45.881963
550      7.9035645 -1.523958e+01 31.04670991 -27.4908221 43.297951
551      6.0344599 -1.717546e+01 29.24438333 -29.4620549 41.530975
552      8.5223235 -1.473813e+01 31.78277981 -27.0514747 44.096122
553     14.9428000 -8.355920e+00 38.24151969 -20.6895170 50.575117
554     19.9174310 -3.410275e+00 43.24513729 -15.7592169 55.594079
555     25.7510893  2.401417e+00 49.10076196  -9.9591535 61.461332
556     23.3654952 -8.284926e-04 46.73181885 -12.3702131 59.101203
557     24.6613720  1.282424e+00 48.04031992 -11.0936434 60.416387
558     25.3020177  1.913497e+00 48.69053839 -10.4676380 61.071673
559     22.9385548 -4.572256e-01 46.33433524 -12.8422037 58.719313
560     15.4330895 -7.968197e+00 38.83437601 -20.3560897 51.222269
561     10.5787453 -1.291501e+01 34.07250047 -25.3518525 46.509343
562      7.9035645 -1.564876e+01 31.45589353 -28.1166145 43.923743
563      6.0344599 -1.758349e+01 29.65241005 -30.0860779 42.154998
564      8.5223235 -1.514529e+01 32.18993537 -27.6741654 44.718812
565     14.9428000 -8.762418e+00 38.64801805 -21.3112026 51.196803
566     19.9174310 -3.816277e+00 43.65113919 -16.3801433 56.215005
567     25.7510893  1.995790e+00 49.50638844 -10.5795057 62.081684
568     23.3654952 -4.061708e-01 47.13716120 -12.9901307 59.721121
569     24.6613720  8.772969e-01 48.44544712 -11.7132320 61.035976
570     25.3020177  1.508533e+00 49.09550260 -11.0869773 61.691013
571     22.9385548 -8.620663e-01 46.73917593 -13.4613541 59.338464
572     15.4330895 -8.372944e+00 39.23912307 -20.9750969 51.841276
573     10.5787453 -1.331819e+01 34.47568142 -25.9684645 47.125955
574      7.9035645 -1.605096e+01 31.85808864 -28.7317188 44.538848
575      6.0344599 -1.798459e+01 30.05350636 -30.6995018 42.768422
576      8.5223235 -1.554556e+01 32.59020407 -28.2863236 45.330970
577     14.9428000 -9.162062e+00 39.04766230 -21.9224057 51.808006
578     19.9174310 -4.215450e+00 44.05031164 -16.9906249 56.825487
579     25.7510893  1.596974e+00 49.90520408 -11.1894416 62.691620
580     23.3654952 -8.047164e-01 47.53570679 -13.5996536 60.330644
581     24.6613720  4.789558e-01 48.84378820 -12.3224421 61.645186
582     25.3020177  1.110347e+00 49.49368873 -11.6959505 62.299986
583     22.9385548 -1.260135e+00 47.13724464 -14.0701476 59.947257
584     15.4330895 -8.770924e+00 39.63710276 -21.5837543 52.449933
585     10.5787453 -1.371468e+01 34.87217197 -26.5748445 47.732335
586      7.9035645 -1.644651e+01 32.25364151 -29.3366647 45.143794
587      6.0344599 -1.837909e+01 30.44801386 -31.3028489 43.371769
588      8.5223235 -1.593928e+01 32.98392400 -28.8884662 45.933113
589     14.9428000 -9.555188e+00 39.44078788 -22.5236394 52.409239
590     19.9174310 -4.608126e+00 44.44298812 -17.5911717 57.426034
591     25.7510893  1.204638e+00 50.29754086 -11.7894689 63.291647
592     23.3654952 -1.196796e+00 47.92778646 -14.1992877 60.930278
593     24.6613720  8.707083e-02 49.23567315 -12.9217784 62.244522
594     25.3020177  7.186092e-01 49.88542615 -12.2950611 62.899097
595     22.9385548 -1.651761e+00 47.52887024 -14.6690873 60.546197
596     15.4330895 -9.162465e+00 40.02864360 -22.1825644 53.048743
597     10.5787453 -1.410480e+01 35.26229454 -27.1714855 48.328976
598      7.9035645 -1.683574e+01 32.64287075 -29.9319395 45.739068
599      6.0344599 -1.876733e+01 30.83624694 -31.8966002 43.965520
600      8.5223235 -1.632676e+01 33.37140643 -29.4810695 46.525716
601     14.9428000 -9.942104e+00 39.82770374 -23.1153762 53.000976
602     19.9174310 -4.994614e+00 44.82947579 -18.1822536 58.017116
603     25.7510893  8.184739e-01 50.68370465 -12.3800555 63.882234
604     23.3654952 -1.582715e+00 48.31370507 -14.7894993 61.520490
605     24.6613720 -2.986621e-01 49.62140607 -13.5117060 62.834450
606     25.3020177  3.330170e-01 50.27101838 -12.8847736 63.488809
607     22.9385548 -2.037246e+00 47.91435584 -15.2586366 61.135746
608     15.4330895 -9.547869e+00 40.41404835 -22.7719901 53.638169
609     10.5787453 -1.448886e+01 35.64634644 -27.7588422 48.916333
610      7.9035645 -1.721894e+01 33.02607030 -30.5179926 46.325122
611      6.0344599 -1.914958e+01 31.21849580 -32.4811994 44.550119
612      8.5223235 -1.670829e+01 33.75293876 -30.0645728 47.109220
613     14.9428000 -1.032310e+01 40.20869515 -23.6980522 53.583652
614     19.9174310 -5.375196e+00 45.21005837 -18.7643044 58.599167
615     25.7510893  4.382006e-01 51.06397795 -12.9616333 64.463812
616     23.3654952 -1.962754e+00 48.69374424 -15.3707190 62.101709
summary(prediccionesbcm)

Forecast method: Regression with ARIMA(1,0,2)(1,1,1)[12] errors

Model Information:
Series: bcm_data$BCM 
Regression with ARIMA(1,0,2)(1,1,1)[12] errors 

Coefficients:
         ar1      ma1     ma2    sar1     sma1    xreg1    xreg2    xreg3
      0.8710  -0.0937  0.1911  0.2104  -0.7481  13.4701  16.2717  17.6293
s.e.  0.0424   0.0691  0.0678  0.1606   0.1349   2.7663   3.8430   3.5365

sigma^2 = 16.09:  log likelihood = -830.96
AIC=1679.92   AICc=1680.55   BIC=1713.13

Error measures:
                    ME     RMSE      MAE       MPE     MAPE      MASE
Training set -0.384886 3.878805 2.897928 -5.795887 18.98328 0.6149693
                    ACF1
Training set -0.01060677

Forecasts:
    Point Forecast         Lo 80       Hi 80       Lo 95     Hi 95
309     -5.1968448 -1.033744e+01 -0.05625256 -13.0587021  2.665013
310     -8.6883458 -1.519918e+01 -2.17751634 -18.6458002  1.269109
311    -10.6657260 -1.855917e+01 -2.77228538 -22.7377018  1.406250
312     -8.4284968 -1.722709e+01  0.37009422 -21.8847805  5.027787
313     -1.9202383 -1.134772e+01  7.50724365 -16.3383277 12.497851
314      3.0402215 -6.837692e+00 12.91813460 -12.0667429 18.147186
315     10.1956760 -1.070215e-02 20.40205413  -5.4136324 25.804984
316      7.5101164 -2.938564e+00 17.95879699  -8.4697616 23.489994
317      8.4804950 -2.148323e+00 19.10931294  -7.7748794 24.735869
318      9.5680672 -1.195400e+00 20.33153458  -6.8932355 26.029370
319      7.1325573 -3.731948e+00 17.99706251  -9.4832696 23.748384
320     -1.0561449 -1.199668e+01  9.88438973 -17.7882487 15.675959
321     -5.8086222 -1.729486e+01  5.67761656 -23.3753084 11.758064
322     -8.6271984 -2.045556e+01  3.20116798 -26.7171238  9.462727
323    -10.4943596 -2.267643e+01  1.68771418 -29.1252336  8.136514
324     -8.0377006 -2.048141e+01  4.40600633 -27.0687080 10.993307
325     -1.5799906 -1.421857e+01 11.05859033 -20.9090323 17.749051
326      3.4079987 -9.376441e+00 16.19243857 -16.1441148 22.960112
327      9.5340490 -3.359945e+00 22.42804331 -10.1856136 29.253712
328      7.0977266 -5.878764e+00 20.07421690 -12.7481026 26.943556
329      8.3359029 -4.702824e+00 21.37463014 -11.6051095 28.276915
330      9.0800047 -4.005741e+00 22.16575021 -10.9329160 29.092925
331      6.7095717 -6.411732e+00 19.83087495 -13.3577300 26.776873
332     -0.9325395 -1.408075e+01 12.21567531 -21.0409989 19.175920
333     -5.7592324 -1.914820e+01  7.62973225 -26.2358868 14.717422
334     -8.4591767 -2.200165e+01  5.08329851 -29.1706052 12.252252
335    -10.3231578 -2.402966e+01  3.38333996 -31.2854371 10.639122
336     -7.8377545 -2.166739e+01  5.99188039 -28.9883560 13.312847
337     -1.4058660 -1.532819e+01 12.51645979 -22.6982258 19.886494
338      3.5746915 -1.041754e+01 17.56692719 -17.8245863 24.973969
339      9.4725943 -4.572446e+00 23.51763461 -12.0074413 30.952630
340      7.0786883 -7.006280e+00 21.16365656 -14.4624118 28.619788
341      8.3644811 -5.750703e+00 22.47966514 -13.2228300 29.951792
342      9.0286911 -5.109373e+00 23.16675512 -12.5936119 30.650994
343      6.6653231 -7.490074e+00 20.82072021 -14.9834885 28.314135
344     -0.8675378 -1.503607e+01 13.30099483 -22.5364384 20.801363
345     -5.7148782 -2.005383e+01  8.62407564 -27.6444158 16.214659
346     -8.3942384 -2.284117e+01  6.05269395 -30.4889148 13.700438
347    -10.2613660 -2.482694e+01  4.30421152 -32.5374945 12.014762
348     -7.7732373 -2.242818e+01  6.88170899 -30.1860435 14.639569
349     -1.3496773 -1.607206e+01 13.37270615 -23.8656199 21.166265
350      3.6267948 -1.114654e+01 18.40013395 -18.9670776 26.220667
351      9.4744900 -5.337389e+00 24.28636941 -13.1783248 32.127305
352      7.0875973 -7.753454e+00 21.92864838 -15.6098316 29.785026
353      8.3817445 -6.481399e+00 23.24488828 -14.3494723 31.112961
354      9.0276909 -5.852192e+00 23.90757332 -13.7291254 31.784507
355      6.6645457 -8.228023e+00 21.55711427 -16.1116724 29.440764
356     -0.8464254 -1.574861e+01 14.05576023 -23.6373515 21.944501
357     -5.6990698 -2.075036e+01  9.35222342 -28.7180364 17.319897
358     -8.3749334 -2.352040e+01  6.77053578 -31.5379298 14.788063
359    -10.2434506 -2.549358e+01  5.00668146 -33.5665150 13.079614
360     -7.7553820 -2.308444e+01  7.57367531 -31.1991521 15.688388
361     -1.3341266 -1.672279e+01 14.05453683 -24.8690565 22.200803
362      3.6410051 -1.179272e+01 19.07473500 -19.9628478 27.244858
363      9.4777159 -5.990116e+00 24.94554759 -14.1782913 33.133723
364      7.0919344 -8.401718e+00 22.58558724 -16.6035627 30.787432
365      8.3875221 -7.125691e+00 23.90073525 -15.3378900 32.112934
366      9.0293484 -6.498688e+00 24.55738453 -14.7187334 32.777430
367      6.6660092 -8.873263e+00 22.20528118 -17.0992565 30.431275
368     -0.8405653 -1.638836e+01 14.70722533 -24.6188591 22.937729
369     -5.6945087 -2.138213e+01  9.99311602 -29.6866604 18.297643
370     -8.3697958 -2.414568e+01  7.40609210 -32.4969342 15.757343
371    -10.2387441 -2.611309e+01  5.63559750 -34.5164545 14.038966
372     -7.7508089 -2.369944e+01  8.19781865 -32.1421299 16.640512
373     -1.3301437 -1.733490e+01 14.67461044 -25.8073029 23.147016
374      3.6446143 -1.240259e+01 19.69181776 -20.8974655 28.186694
375      9.4789337 -6.600399e+00 25.55826634 -15.1122834 34.070151
376      7.0933166 -9.010348e+00 23.19698108 -17.5351129 31.721746
377      8.3891468 -7.732952e+00 24.51124606 -16.2674762 33.045770
378      9.0300534 -7.106017e+00 25.16612401 -15.6479370 33.708044
379      6.6666273 -9.480035e+00 22.81328921 -18.0275610 31.360816
380     -0.8390619 -1.699375e+01 15.31563029 -25.5455316 23.867408
381     -5.6933136 -2.198189e+01 10.59526595 -30.6045462 19.217919
382     -8.3685096 -2.474161e+01  8.00459500 -33.4090123 16.671993
383    -10.2375751 -2.670508e+01  6.22993214 -35.4224541 14.947304
384     -7.7496910 -2.428846e+01  8.78907480 -33.0435507 17.544169
385     -1.3291701 -1.792179e+01 15.26345151 -26.7053950 24.047055
386      3.6454918 -1.298787e+01 20.27885458 -21.7930413 29.084025
387      9.4792927 -7.184912e+00 26.14349715 -16.0064086 34.964994
388      7.0936969 -9.593867e+00 23.78126116 -18.4277302 32.615124
389      8.3895667 -8.315698e+00 25.09483090 -17.1589303 33.938064
390      9.0302696 -7.688410e+00 25.74894938 -16.5387446 34.599284
391      6.6668166 -1.006203e+01 23.39566676 -18.9177520 32.251385
392     -0.8386940 -1.757526e+01 15.89786775 -26.4350565 24.757668
393     -5.6930172 -2.255868e+01 11.17264430 -31.4868206 20.100786
394     -8.3681999 -2.531539e+01  8.57899407 -34.2866964 17.550297
395    -10.2372951 -2.727560e+01  6.80101099 -36.2951355 15.820545
396     -7.7494262 -2.485653e+01  9.35767793 -33.9124841 18.413632
397     -1.3289394 -1.848805e+01 15.83017388 -27.5715386 24.913660
398      3.6456990 -1.355277e+01 20.84416391 -22.6570834 29.948481
399      9.4793879 -7.748871e+00 26.70764682 -16.8689604 35.827736
400      7.0937940 -1.015703e+01 24.34462170 -19.2890701 33.476658
401      8.3896699 -8.878260e+00 25.65759951 -18.0193495 34.798689
402      9.0303281 -8.250565e+00 26.31122073 -17.3985166 35.459173
403      6.6668677 -1.062385e+01 23.95758816 -19.7770074 33.110743
404     -0.8386068 -1.813678e+01 16.45956580 -27.2938789 25.616665
405     -5.6929463 -2.311602e+01 11.73012714 -32.3392376 20.953345
406     -8.3681273 -2.587011e+01  9.13385629 -35.1351013 18.398847
407    -10.2372297 -2.782743e+01  7.35296790 -37.1391153 16.664656
408      5.7207016 -1.193613e+01 23.37752822 -21.2830845 32.724488
409     -1.3288859 -1.903609e+01 16.37832124 -28.4097224 25.751950
410      3.6457468 -1.409959e+01 21.39107959 -23.4933976 30.784891
411      9.4794117 -8.294790e+00 27.25361362 -17.7038845 36.662708
412      7.0938177 -1.070225e+01 24.88988995 -20.1229261 34.310562
413      8.3896944 -9.422952e+00 26.20234050 -18.8523968 35.631786
414      9.0303428 -8.794867e+00 26.85555227 -18.2309625 36.291648
415      6.6668806 -1.116785e+01 24.50161523 -20.6089923 33.942753
416     -0.8385866 -1.868054e+01 17.00337095 -28.1255059 26.448333
417     -5.6929297 -2.365600e+01 12.27013954 -33.1650734 21.779214
418     -8.3681106 -2.640772e+01  9.67150117 -35.9573159 19.221095
419    -10.2372147 -2.836242e+01  7.88798921 -37.9573219 17.482893
420     -7.7493508 -2.593922e+01 10.44051845 -35.5683551 20.069654
421     -1.3288737 -1.956765e+01 16.90990052 -29.2226719 26.564924
422      3.6457577 -1.463003e+01 21.92154633 -24.3046489 31.596164
423      9.4794174 -8.824402e+00 27.78323675 -18.5138587 37.472693
424      7.0938233 -1.123123e+01 25.41887955 -20.9319317 35.119578
425      8.3897001 -9.951451e+00 26.73085116 -19.6606697 36.440070
426      9.0303464 -9.323005e+00 27.38369826 -19.0386830 37.099376
427      6.6668837 -1.169572e+01 25.02948620 -21.4162934 34.750061
428     -0.8385820 -1.920820e+01 17.53103541 -28.9324874 27.255323
429     -5.6929259 -2.418020e+01 12.79434492 -33.9667668 22.580915
430     -8.3681068 -2.692976e+01 10.19354376 -36.7557016 20.019488
431    -10.2372113 -2.888206e+01  8.40763387 -38.7520412 18.277619
432     -7.7493476 -2.645706e+01 10.95836585 -36.3603264 20.861631
433     -1.3288710 -2.008414e+01 17.42639658 -30.0125775 27.354835
434      3.6457602 -1.514550e+01 22.43702422 -25.0929982 32.384519
435      9.4794187 -9.339108e+00 28.29794535 -19.3010342 38.259872
436      7.0938246 -1.174536e+01 25.93300760 -21.7182194 35.905869
437      8.3897015 -1.046514e+01 27.24454013 -20.4462859 37.225689
438      9.0303473 -9.836360e+00 27.89705441 -19.8237913 37.884486
439      6.6668844 -1.220882e+01 25.54259053 -22.2010169 35.534786
440     15.4330892 -3.449441e+00 34.31561948 -13.4452487 44.311427
441     10.5787451 -8.418262e+00 29.57575207 -18.4746699 39.632160
442      7.9035642 -1.116583e+01 26.97296253 -21.2605638 37.067692
443     23.6637260  4.513339e+00 42.81411299  -5.6242634 52.951715
444     20.8628097  1.651209e+00 40.07441054  -8.5187982 50.244418
445     23.5811403  4.323230e+00 42.83905086  -5.8712923 53.033573
446     25.9642693  6.671300e+00 45.25723837  -3.5417808 55.470319
447     29.9838760  1.066435e+01 49.30339970   0.4372143 59.530538
448     26.3284459  6.988801e+00 45.66809072  -3.2489885 55.905880
449     26.7354375  7.380542e+00 46.09033315  -2.8653211 56.336196
450     26.7538635  7.387406e+00 46.12032117  -2.8645775 56.372305
451     23.9548469  4.579622e+00 43.33007136  -5.6770019 53.586696
452     16.1444940 -3.237379e+00 35.52636668 -13.4975224 45.786510
453     11.0767284 -8.416689e+00 30.57014559 -18.7358804 40.889337
454      8.2521526 -1.131182e+01 27.81612429 -21.6683601 38.172665
455      6.2784716 -1.336445e+01 25.92139280 -23.7627840 36.319727
456      8.6931316 -1.100947e+01 28.39573648 -21.4394022 38.825665
457     15.0623657 -4.685397e+00 34.81012883 -15.1392318 45.263963
458     20.0011270  2.191735e-01 39.78308061 -10.2527602 50.255014
459     25.8096765  6.001824e+00 45.61752905  -4.4838199 56.103173
460     23.4065062  3.579028e+00 43.23398439  -6.9170049 53.730017
461     24.6900797  4.847726e+00 44.53243379  -5.6561821 55.036342
462     25.3221131  5.468481e+00 45.17574525  -5.0413971 55.685623
463     22.9526216  3.090438e+00 42.81480554  -7.4239674 53.329211
464     15.4429363 -4.425733e+00 35.31160553 -14.9435712 45.829444
465     10.5856381 -9.391858e+00 30.56313389 -19.9673052 41.138581
466      7.9083894 -1.213796e+01 27.95473602 -22.7498522 38.566631
467      6.0378373 -1.408557e+01 26.16124110 -24.7382530 36.813928
468      8.5246876 -1.165698e+01 28.70635417 -22.3405078 39.389883
469     14.9444549 -5.281300e+00 35.17021013 -15.9881684 45.877078
470     19.9185895 -3.405495e-01 40.17772848 -11.0650898 50.902269
471     25.7519002  5.467471e+00 46.03632891  -5.2704565 56.774257
472     23.3660628  3.062469e+00 43.66965649  -7.6856041 54.417730
473     24.6617693  4.343648e+00 44.97989032  -6.4121152 55.735654
474     25.3022958  4.973161e+00 45.63143095  -5.7884334 56.393025
475     22.9387495  2.601263e+00 43.27623647  -8.1647527 54.042252
476     15.4332258 -4.910595e+00 35.77704657 -15.6799631 46.546415
477     10.5788407 -9.871278e+00 31.02895967 -20.6969172 41.854599
478      7.9036312 -1.261375e+01 28.42101506 -23.4749995 39.282262
479      6.0345066 -1.455817e+01 26.62718504 -25.4592773 37.528291
480      8.5223562 -1.212726e+01 29.17197331 -23.0585080 40.103220
481     14.9428229 -5.749886e+00 35.63553170 -16.7039444 46.589590
482     19.9174471 -8.078934e-01 40.64278752 -11.7792259 51.614120
483     25.7511005  5.001038e+00 46.50116248  -5.9833808 57.485582
484     23.3655030  2.596706e+00 44.13430030  -8.3976314 55.128637
485     24.6613775  3.878378e+00 45.44437689  -7.1234772 56.446232
486     25.3020215  4.508254e+00 46.09578884  -6.4993013 57.103344
487     22.9385575  2.136625e+00 43.74049010  -8.8752530 54.752368
488     15.4330914 -5.375034e+00 36.24121643 -16.3901896 47.256372
489     10.5787467 -1.033332e+01 31.49080988 -21.4034941 42.560987
490      7.9035654 -1.307428e+01 28.88141233 -24.1792829 39.986414
491      6.0344605 -1.501703e+01 27.08595520 -26.1610223 38.229943
492      8.5223239 -1.258487e+01 29.62951964 -23.7583463 40.802994
493     14.9428003 -6.206555e+00 36.09215542 -17.4023472 47.287948
494     19.9174313 -1.263852e+00 41.09871452 -12.4765460 52.311409
495     25.7510894  4.545616e+00 46.95656269  -6.6798833 58.182062
496     23.3654953  2.141689e+00 44.58930181  -9.0935157 55.824506
497     24.6613721  3.423668e+00 45.89907646  -7.8188939 57.141638
498     25.3020177  4.053776e+00 46.55025960  -7.1943639 57.798399
499     22.9385548  1.682322e+00 44.19478743  -9.5700476 55.447157
500     15.4330896 -5.829203e+00 36.69538225 -17.0847810 47.950960
501     10.5787454 -1.078528e+01 31.94276679 -22.0947059 43.252197
502      7.9035645 -1.352485e+01 29.33198220 -24.8683724 40.675501
503      6.0344599 -1.546606e+01 27.53498202 -26.8477511 38.916671
504      8.5223235 -1.303274e+01 30.07738633 -24.4433004 41.487947
505     14.9428000 -6.653548e+00 36.53914795 -18.0859641 47.971564
506     19.9174310 -1.710185e+00 41.54504728 -13.1591536 52.994016
507     25.7510893  4.099782e+00 47.40239685  -7.3617282 58.863907
508     23.3654952  1.696232e+00 45.03475883  -9.7747837 56.505774
509     24.6613720  2.978496e+00 46.34424799  -8.4997252 57.822469
510     25.3020177  3.608820e+00 46.99521491  -7.8748645 58.478900
511     22.9385548  1.237531e+00 44.63957892 -10.2502975 56.127407
512     15.4330895 -6.273871e+00 37.14004957 -17.7648410 48.631020
513     10.5787453 -1.122787e+01 32.38535983 -22.7715935 43.929084
514      7.9035645 -1.396614e+01 29.77327205 -25.5432670 41.350396
515      6.0344599 -1.590590e+01 27.97482167 -27.5204279 39.589348
516      8.5223235 -1.347149e+01 30.51613529 -25.1143091 42.158956
517     14.9428000 -7.091475e+00 36.97707486 -18.7557155 48.641315
518     19.9174310 -2.147492e+00 41.98235360 -13.8279560 53.662818
519     25.7510893  3.662944e+00 47.83923414  -8.0298132 59.531992
520     23.3654952  1.259749e+00 45.47124128 -10.4423260 57.173316
521     24.6613720  2.542282e+00 46.78046183  -9.1668567 58.489601
522     25.3020177  3.172810e+00 47.43122530  -8.5416848 59.145720
523     22.9385548  8.016745e-01 45.07543515 -10.9168821 56.793992
524     15.4330895 -6.709610e+00 37.57578896 -18.4312469 49.297426
525     10.5787453 -1.166166e+01 32.81914684 -23.4350135 44.592504
526      7.9035645 -1.439870e+01 30.20583192 -26.2048102 42.011939
527      6.0344599 -1.633710e+01 28.40601546 -28.1798819 40.248802
528      8.5223235 -1.390165e+01 30.94630131 -25.7721912 42.816838
529     14.9428000 -7.520866e+00 37.40646604 -19.4124126 49.298013
530     19.9174310 -2.576298e+00 42.41115975 -14.4837584 54.318620
531     25.7510893  3.234580e+00 48.26759804  -8.6849393 60.187118
532     23.3654952  8.317198e-01 45.89927059 -11.0969404 57.827931
533     24.6613720  2.114506e+00 47.20823782  -9.8210836 59.143828
534     25.3020177  2.745226e+00 47.85880942  -9.1956183 59.799654
535     22.9385548  3.742357e-01 45.50287387 -11.5705932 57.447703
536     15.4330895 -7.136938e+00 38.00311748 -19.0847895 49.950969
537     10.5787453 -1.208714e+01 33.24463343 -24.0857391 45.243230
538      7.9035645 -1.482303e+01 30.63016028 -26.8537644 42.660893
539      6.0344599 -1.676013e+01 28.82905404 -28.8268635 40.895783
540      8.5223235 -1.432372e+01 31.36836920 -26.4176884 43.462335
541     14.9428000 -7.942202e+00 37.82780198 -20.0567904 49.942390
542     19.9174310 -2.997081e+00 42.83194293 -15.1272907 54.962153
543     25.7510893  2.814215e+00 48.68796332  -9.3278325 60.830011
544     23.3654952  4.116707e-01 46.31931966 -11.7393500 58.470340
545     24.6613720  1.694697e+00 47.62804747 -10.4631271 59.785871
546     25.3020177  2.325598e+00 48.27843771  -9.8373844 60.441420
547     22.9385548 -4.525511e-02 45.92236473 -12.2121491 58.089259
548     15.4330895 -7.556325e+00 38.42250417 -19.7261861 50.592365
549     10.5787453 -1.250479e+01 33.66227857 -24.7244722 45.881963
550      7.9035645 -1.523958e+01 31.04670991 -27.4908221 43.297951
551      6.0344599 -1.717546e+01 29.24438333 -29.4620549 41.530975
552      8.5223235 -1.473813e+01 31.78277981 -27.0514747 44.096122
553     14.9428000 -8.355920e+00 38.24151969 -20.6895170 50.575117
554     19.9174310 -3.410275e+00 43.24513729 -15.7592169 55.594079
555     25.7510893  2.401417e+00 49.10076196  -9.9591535 61.461332
556     23.3654952 -8.284926e-04 46.73181885 -12.3702131 59.101203
557     24.6613720  1.282424e+00 48.04031992 -11.0936434 60.416387
558     25.3020177  1.913497e+00 48.69053839 -10.4676380 61.071673
559     22.9385548 -4.572256e-01 46.33433524 -12.8422037 58.719313
560     15.4330895 -7.968197e+00 38.83437601 -20.3560897 51.222269
561     10.5787453 -1.291501e+01 34.07250047 -25.3518525 46.509343
562      7.9035645 -1.564876e+01 31.45589353 -28.1166145 43.923743
563      6.0344599 -1.758349e+01 29.65241005 -30.0860779 42.154998
564      8.5223235 -1.514529e+01 32.18993537 -27.6741654 44.718812
565     14.9428000 -8.762418e+00 38.64801805 -21.3112026 51.196803
566     19.9174310 -3.816277e+00 43.65113919 -16.3801433 56.215005
567     25.7510893  1.995790e+00 49.50638844 -10.5795057 62.081684
568     23.3654952 -4.061708e-01 47.13716120 -12.9901307 59.721121
569     24.6613720  8.772969e-01 48.44544712 -11.7132320 61.035976
570     25.3020177  1.508533e+00 49.09550260 -11.0869773 61.691013
571     22.9385548 -8.620663e-01 46.73917593 -13.4613541 59.338464
572     15.4330895 -8.372944e+00 39.23912307 -20.9750969 51.841276
573     10.5787453 -1.331819e+01 34.47568142 -25.9684645 47.125955
574      7.9035645 -1.605096e+01 31.85808864 -28.7317188 44.538848
575      6.0344599 -1.798459e+01 30.05350636 -30.6995018 42.768422
576      8.5223235 -1.554556e+01 32.59020407 -28.2863236 45.330970
577     14.9428000 -9.162062e+00 39.04766230 -21.9224057 51.808006
578     19.9174310 -4.215450e+00 44.05031164 -16.9906249 56.825487
579     25.7510893  1.596974e+00 49.90520408 -11.1894416 62.691620
580     23.3654952 -8.047164e-01 47.53570679 -13.5996536 60.330644
581     24.6613720  4.789558e-01 48.84378820 -12.3224421 61.645186
582     25.3020177  1.110347e+00 49.49368873 -11.6959505 62.299986
583     22.9385548 -1.260135e+00 47.13724464 -14.0701476 59.947257
584     15.4330895 -8.770924e+00 39.63710276 -21.5837543 52.449933
585     10.5787453 -1.371468e+01 34.87217197 -26.5748445 47.732335
586      7.9035645 -1.644651e+01 32.25364151 -29.3366647 45.143794
587      6.0344599 -1.837909e+01 30.44801386 -31.3028489 43.371769
588      8.5223235 -1.593928e+01 32.98392400 -28.8884662 45.933113
589     14.9428000 -9.555188e+00 39.44078788 -22.5236394 52.409239
590     19.9174310 -4.608126e+00 44.44298812 -17.5911717 57.426034
591     25.7510893  1.204638e+00 50.29754086 -11.7894689 63.291647
592     23.3654952 -1.196796e+00 47.92778646 -14.1992877 60.930278
593     24.6613720  8.707083e-02 49.23567315 -12.9217784 62.244522
594     25.3020177  7.186092e-01 49.88542615 -12.2950611 62.899097
595     22.9385548 -1.651761e+00 47.52887024 -14.6690873 60.546197
596     15.4330895 -9.162465e+00 40.02864360 -22.1825644 53.048743
597     10.5787453 -1.410480e+01 35.26229454 -27.1714855 48.328976
598      7.9035645 -1.683574e+01 32.64287075 -29.9319395 45.739068
599      6.0344599 -1.876733e+01 30.83624694 -31.8966002 43.965520
600      8.5223235 -1.632676e+01 33.37140643 -29.4810695 46.525716
601     14.9428000 -9.942104e+00 39.82770374 -23.1153762 53.000976
602     19.9174310 -4.994614e+00 44.82947579 -18.1822536 58.017116
603     25.7510893  8.184739e-01 50.68370465 -12.3800555 63.882234
604     23.3654952 -1.582715e+00 48.31370507 -14.7894993 61.520490
605     24.6613720 -2.986621e-01 49.62140607 -13.5117060 62.834450
606     25.3020177  3.330170e-01 50.27101838 -12.8847736 63.488809
607     22.9385548 -2.037246e+00 47.91435584 -15.2586366 61.135746
608     15.4330895 -9.547869e+00 40.41404835 -22.7719901 53.638169
609     10.5787453 -1.448886e+01 35.64634644 -27.7588422 48.916333
610      7.9035645 -1.721894e+01 33.02607030 -30.5179926 46.325122
611      6.0344599 -1.914958e+01 31.21849580 -32.4811994 44.550119
612      8.5223235 -1.670829e+01 33.75293876 -30.0645728 47.109220
613     14.9428000 -1.032310e+01 40.20869515 -23.6980522 53.583652
614     19.9174310 -5.375196e+00 45.21005837 -18.7643044 58.599167
615     25.7510893  4.382006e-01 51.06397795 -12.9616333 64.463812
616     23.3654952 -1.962754e+00 48.69374424 -15.3707190 62.101709
plot(prediccionesbcm)

autoplot(prediccionesbcm)

library(TSstudio)
Warning: package 'TSstudio' was built under R version 4.3.3
TSstudio::ts_plot(serie1BCM)