# Load packages

# Core
library(tidyverse)
library(tidyquant)

Goal

Visualize expected returns and risk to make it easier to compare the performance of multiple assets and portfolios.

Choose your stocks.

from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("AMZN", "AAPL", "TSLA")

prices <- tq_get(x = symbols,
                 get = "stock.prices",
                 from = "2012-12-31",
                 to = "2017-12-31")

2 Convert prices to returns (monthly)

asset_returns_tbl <- prices %>%

    group_by(symbol) %>%
    tq_transmute(select = adjusted,
                 mutate_fun = periodReturn,
                 period = "quarterly",
                 type = "log") %>%
    slice(-1) %>%
    
    ungroup() %>%
    
set_names(c("asset", "date", "returns"))

3 Assign a weight to each asset (change the weigting scheme)

symbols <- asset_returns_tbl %>% distinct(asset) %>% pull
symbols
## [1] "AAPL" "AMZN" "TSLA"
weight <- c(0.25, 0.25, 0.2)
weight
## [1] 0.25 0.25 0.20
w_tbl <- tibble(symbols, weight)
w_tbl
## # A tibble: 3 Ă— 2
##   symbols weight
##   <chr>    <dbl>
## 1 AAPL      0.25
## 2 AMZN      0.25
## 3 TSLA      0.2

4 Build a portfolio

portfolio_returns_tbl <- asset_returns_tbl %>%
    
    tq_portfolio(assets_col   = asset,
                 returns_col  = returns,
                 weights      = w_tbl,
                 rebalance_on = "quarters")

portfolio_returns_tbl
## # A tibble: 20 Ă— 2
##    date       portfolio.returns
##    <date>                 <dbl>
##  1 2013-03-28         -0.00706 
##  2 2013-06-28          0.193   
##  3 2013-09-30          0.195   
##  4 2013-12-31          0.0528  
##  5 2014-03-31          0.0131  
##  6 2014-06-30          0.0689  
##  7 2014-09-30          0.0218  
##  8 2014-12-31         -0.00309 
##  9 2015-03-31          0.0435  
## 10 2015-06-30          0.112   
## 11 2015-09-30         -0.00518 
## 12 2015-12-31          0.0520  
## 13 2016-03-31         -0.0311  
## 14 2016-06-30         -0.000369
## 15 2016-09-30          0.0746  
## 16 2016-12-30         -0.0110  
## 17 2017-03-31          0.150   
## 18 2017-06-30          0.0760  
## 19 2017-09-29          0.00452 
## 20 2017-12-29          0.0550

5 Compute Standard Deviation

portfolio_sd_tidyquant_builtin_percent <- portfolio_returns_tbl %>%
    
    tq_performance(Ra = portfolio.returns, 
                   performance_fun = table.Stats) %>%
    
    select(Stdev) %>%
    mutate(tq_sd = round(Stdev, 4)*100)

portfolio_sd_tidyquant_builtin_percent
## # A tibble: 1 Ă— 2
##    Stdev tq_sd
##    <dbl> <dbl>
## 1 0.0661  6.61
portfolio_mean_tidyquant_builtin_percent <- mean(portfolio_returns_tbl$portfolio.returns)

portfolio_mean_tidyquant_builtin_percent
## [1] 0.05268472

6 Plot: Expected Returns Vurses Risk

sd_mean_tbl <- asset_returns_tbl %>%
    
    group_by(asset) %>%
    tq_performance(Ra = returns,
                   performance_fun = table.Stats) %>%
    select(Mean = ArithmeticMean, Stdev) %>%
    ungroup() %>%
    mutate(Stdev = Stdev * 100,
           Mean  = Mean  * 100) %>%
        
    add_row(tibble(asset = "Portfolio",
                   Mean  = portfolio_mean_tidyquant_builtin_percent *100,
                   Stdev = portfolio_sd_tidyquant_builtin_percent$tq_sd))

sd_mean_tbl
## # A tibble: 4 Ă— 3
##   asset      Mean Stdev
##   <chr>     <dbl> <dbl>
## 1 AAPL       4.5  11.9 
## 2 AMZN       7.7  12.9 
## 3 TSLA      11.1  30.0 
## 4 Portfolio  5.27  6.61
sd_mean_tbl %>%
    
    ggplot(aes(x = Stdev, y = Mean, color = asset)) +
    geom_point() +
    ggrepel::geom_text_repel(aes(label = asset))

How should you expect your portfolio to perform relative to its assets in the portfolio? Would you invest all your money in any of the individual stocks instead of the portfolio? Discuss both in terms of expected return and risk.

The portfolio has lower risk and steady returns compared to the individual stocks. I wouldn’t invest all my money in one stock because the portfolio gives a safer balance of risk and return.