# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize expected returns and risk to make it easier to compare the performance of multiple assets and portfolios.
Choose your stocks.
from 2012-12-31 to 2017-12-31
symbols <- c("AMZN", "AAPL", "TSLA")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "quarterly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull
symbols
## [1] "AAPL" "AMZN" "TSLA"
weight <- c(0.25, 0.25, 0.2)
weight
## [1] 0.25 0.25 0.20
w_tbl <- tibble(symbols, weight)
w_tbl
## # A tibble: 3 Ă— 2
## symbols weight
## <chr> <dbl>
## 1 AAPL 0.25
## 2 AMZN 0.25
## 3 TSLA 0.2
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "quarters")
portfolio_returns_tbl
## # A tibble: 20 Ă— 2
## date portfolio.returns
## <date> <dbl>
## 1 2013-03-28 -0.00706
## 2 2013-06-28 0.193
## 3 2013-09-30 0.195
## 4 2013-12-31 0.0528
## 5 2014-03-31 0.0131
## 6 2014-06-30 0.0689
## 7 2014-09-30 0.0218
## 8 2014-12-31 -0.00309
## 9 2015-03-31 0.0435
## 10 2015-06-30 0.112
## 11 2015-09-30 -0.00518
## 12 2015-12-31 0.0520
## 13 2016-03-31 -0.0311
## 14 2016-06-30 -0.000369
## 15 2016-09-30 0.0746
## 16 2016-12-30 -0.0110
## 17 2017-03-31 0.150
## 18 2017-06-30 0.0760
## 19 2017-09-29 0.00452
## 20 2017-12-29 0.0550
portfolio_sd_tidyquant_builtin_percent <- portfolio_returns_tbl %>%
tq_performance(Ra = portfolio.returns,
performance_fun = table.Stats) %>%
select(Stdev) %>%
mutate(tq_sd = round(Stdev, 4)*100)
portfolio_sd_tidyquant_builtin_percent
## # A tibble: 1 Ă— 2
## Stdev tq_sd
## <dbl> <dbl>
## 1 0.0661 6.61
portfolio_mean_tidyquant_builtin_percent <- mean(portfolio_returns_tbl$portfolio.returns)
portfolio_mean_tidyquant_builtin_percent
## [1] 0.05268472
sd_mean_tbl <- asset_returns_tbl %>%
group_by(asset) %>%
tq_performance(Ra = returns,
performance_fun = table.Stats) %>%
select(Mean = ArithmeticMean, Stdev) %>%
ungroup() %>%
mutate(Stdev = Stdev * 100,
Mean = Mean * 100) %>%
add_row(tibble(asset = "Portfolio",
Mean = portfolio_mean_tidyquant_builtin_percent *100,
Stdev = portfolio_sd_tidyquant_builtin_percent$tq_sd))
sd_mean_tbl
## # A tibble: 4 Ă— 3
## asset Mean Stdev
## <chr> <dbl> <dbl>
## 1 AAPL 4.5 11.9
## 2 AMZN 7.7 12.9
## 3 TSLA 11.1 30.0
## 4 Portfolio 5.27 6.61
sd_mean_tbl %>%
ggplot(aes(x = Stdev, y = Mean, color = asset)) +
geom_point() +
ggrepel::geom_text_repel(aes(label = asset))
How should you expect your portfolio to perform relative to its assets in the portfolio? Would you invest all your money in any of the individual stocks instead of the portfolio? Discuss both in terms of expected return and risk.
The portfolio has lower risk and steady returns compared to the individual stocks. I wouldn’t invest all my money in one stock because the portfolio gives a safer balance of risk and return.