Person
Manipulation text | explanation |
---|---|
Jeff | Man was confronter/seeker |
Jane | Woman was confronter/seeker |
Solicitation (cond_person)
All participants saw “Your comment about women is pretty messed up” before the text below.
Manipulation label | |
---|---|
noseeking | [participants didn’t see any additional text |
indirect | [participant] probably doesn’t appreciate it either. |
general | What did others think about it? |
direct_think | “[participant]…what do you think of Paul’s comment?” |
direct_describe | “[participant]…will you describe how Paul’s comment made you feel?” |
direct_explain | “[participant]…could you explain why Paul’s comment was discriminatory?” |
Items
Competence
When {he/she} responded to Paul, did you think that {Jeff/Jane} was…(1 = Not at all, 4 = Somewhat, 7 = Very much so)
Item label | Item text |
---|---|
Comp1 | competent at reducing sexism? |
Comp2 | competent in managing difficult conversations? |
Tokenism
{Jeff/Jane} led me to feel…(1 = Not at all, 4 = Somewhat, 7 = Very much so)
Item label | Item text |
---|---|
token_1 | worried that I stood out because I am a woman |
token_2 | feel like my skills and knowledge as a woman were made salient |
token_3 | feel like a “token” representative of women |
Empowerment
{Jeff/Jane} led me to feel…(1 = Not at all, 4 = Somewhat, 7 = Very much so)
Item label | Item text |
---|---|
empower_exp_2 | supported |
empower_exp_3 | empowered |
empower_exp_4 | like I have influence |
empower_exp_4.1 | inspired |
Agency
When {Jeff/Jane} responded to Paul, did you think that {Jeff/Jane} was…(1 = Not at all, 4 = Somewhat, 7 = Very much so)
Item label | Item text |
---|---|
agency_1 | powerful |
agency_2 | capable |
agency_3 | agentic |
Warm
When {Jeff/Jane} responded to Paul, did you think that {Jeff/Jane} was…(1 = Not at all, 4 = Somewhat, 7 = Very much so)
Item label | Item text |
---|---|
warm_1 | warm |
warm_2 | friendly |
warm_3 | caring |
Status
Do you think that {Jeff/Jane} should experience any of the following changes after {his/her} response to Paul?
Item label | Item text | - 3 | 0 | 3 |
---|---|---|---|---|
j_posstat1 | After {his/her} response back to Paul, I think{Jeff/Jane} is worthy of…: | -3. A lot of disrespect | 0. Neither disrespect nor respect | 3. A lot of respect |
j_posstat2 | After {his/her} response back to Paul, I hold{Jeff/Jane}… | -3. In very low regard | 0. In neither low regard nor high regard | 3. In very high regard |
j_posstat3 | After {his/her} response back to Paul, in terms of being like{Jeff/Jane}…: | -3. I want to be very different from him | -3. A lot of disrespect | 0. I don’t want to be like him, or different from him |
Rewards
Do you think that {Jeff/Jane} should experience any of the following changes after {his/her} response to Paul?
Item label | Item text | - 3 | 0 | 3 |
---|
j_reward4 | change in {his/her} public recognition: | -3. Should definitely be decreased | 0. Should be kept the same | 3. Should definitely be increased |
Manipulations
##
## Solicitation NoSolicitation
## 210 221
##
## Woman Man
## 216 215
Analyses
Means and SDs
Significant interactions?
Because this is exploratory, I included all items in each scale.
Coded all interactions @ p<.05 w/ “”, all interactions @ p< .01 w/ ””, all interactions @ p< .001 w/ ””
Significant comparisons (Interactions)
effect that correspond to a significant estimate are coded with asterices
What this says:
- women’s (versus men’s) solicitation is more agentic, and worthier of
status.
- women’s solicitation (versus not solicitation) is not rewarded
differently, but is generally not seen as better.
- men (versus women) not soliciting are more empowering, and rewarded more.
Interactions
sjPlot::plot_model(lm(empower_exp_2~confronter*solicitation, diffidp3raw), type = "int", axis.title = "I feel supported", title = "I feel supported")
## Ignoring unknown labels:
## • linetype : "solicitation"
## • shape : "solicitation"
sjPlot::plot_model(lm(empower_exp_3~confronter*solicitation, diffidp3raw), type = "int", axis.title = "I feel empowered", title = "I feel empowered")
## Ignoring unknown labels:
## • linetype : "solicitation"
## • shape : "solicitation"
sjPlot::plot_model(lm(empower_exp_4~confronter*solicitation, diffidp3raw), type = "int", axis.title = "I feel like I have influence", title = "I feel like I have influence")
## Ignoring unknown labels:
## • linetype : "solicitation"
## • shape : "solicitation"
sjPlot::plot_model(lm(empower_exp_4.1~confronter*solicitation, diffidp3raw), type = "int", axis.title = "I feel inspired", title = "I feel inspired")
## Ignoring unknown labels:
## • linetype : "solicitation"
## • shape : "solicitation"
sjPlot::plot_model(lm(warm_1~confronter*solicitation, diffidp3raw), type = "int", axis.title = "Confronter was warm", title = "Confronter was warm")
## Ignoring unknown labels:
## • linetype : "solicitation"
## • shape : "solicitation"
sjPlot::plot_model(lm(warm_2~confronter*solicitation, diffidp3raw), type = "int", axis.title = "Confronter was friendly", title = "Confronter was friendly")
## Ignoring unknown labels:
## • linetype : "solicitation"
## • shape : "solicitation"
sjPlot::plot_model(lm(warm_3~confronter*solicitation, diffidp3raw), type = "int", axis.title = "Confronter was caring", title = "Confronter was caring")
## Ignoring unknown labels:
## • linetype : "solicitation"
## • shape : "solicitation"
sjPlot::plot_model(lm(agency_1~confronter*solicitation, diffidp3raw), type = "int", axis.title = "Confronter was powerful", title = "Confronter was powerful")
## Ignoring unknown labels:
## • linetype : "solicitation"
## • shape : "solicitation"
sjPlot::plot_model(lm(agency_2~confronter*solicitation, diffidp3raw), type = "int", axis.title = "Confronter was capable", title = "Confronter was capable")
## Ignoring unknown labels:
## • linetype : "solicitation"
## • shape : "solicitation"
sjPlot::plot_model(lm(agency_3~confronter*solicitation, diffidp3raw), type = "int", axis.title = "Confronter was agentic", title = "Confronter was agentic")
## Ignoring unknown labels:
## • linetype : "solicitation"
## • shape : "solicitation"
# Moderated mediation
bruceR::PROCESS(
data = diffidp3raw,
x = "solicitation",
mods = "confronter",
meds = "agency",
y = "posstatus",
mod.path = "all", seed = 1, nsim = 1000
)
##
## ****************** PART 1. Regression Model Summary ******************
##
## PROCESS Model ID : 59
## Model Type : Moderated Mediation
## - Outcome (Y) : posstatus
## - Predictor (X) : solicitation (recoded: Solicitation=0, NoSolicitation=1)
## - Mediators (M) : agency
## - Moderators (W) : confronter
## - Covariates (C) : -
## - HLM Clusters : -
##
## All numeric predictors have been grand-mean centered.
## (For details, please see the help page of PROCESS.)
##
## Formula of Mediator:
## - agency ~ solicitation*confronter
## Formula of Outcome:
## - posstatus ~ solicitation*confronter + agency*confronter
##
## CAUTION:
## Fixed effect (coef.) of a predictor involved in an interaction
## denotes its "simple effect/slope" at the other predictor = 0.
## Only when all predictors in an interaction are mean-centered
## can the fixed effect be interpreted as "main effect"!
##
## Model Summary
##
## ─────────────────────────────────────────────────────────────────────
## (1) posstatus (2) agency (3) posstatus
## ─────────────────────────────────────────────────────────────────────
## (Intercept) 1.625 *** 5.172 *** 1.688 ***
## (0.062) (0.100) (0.059)
## solicitation 0.634 *** 0.546 ** 0.366 **
## (0.123) (0.199) (0.117)
## confronterMan -0.628 *** -0.085
## (0.141) (0.083)
## solicitation:confronterMan 0.165 -0.249
## (0.282) (0.167)
## agency 0.573 ***
## (0.041)
## confronterMan:agency 0.124 *
## (0.056)
## ─────────────────────────────────────────────────────────────────────
## R^2 0.058 0.084 0.594
## Adj. R^2 0.056 0.077 0.590
## Num. obs. 431 431 431
## ─────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
##
## ************ PART 2. Mediation/Moderation Effect Estimate ************
##
## Package Use : ‘mediation’ (v4.5.1), ‘interactions’ (v1.2.0)
## Effect Type : Moderated Mediation (Model 59)
## Sample Size : 431
## Random Seed : set.seed(1)
## Simulations : 1000 (Bootstrap)
##
## Interaction Effect on "posstatus" (Y)
## ─────────────────────────────────────────────────
## F df1 df2 p
## ─────────────────────────────────────────────────
## solicitation * confronter 2.23 1 425 .136
## confronter * agency 4.90 1 425 .027 *
## (All Interactions) 3.00 2 425 .051 .
## ─────────────────────────────────────────────────
##
## Simple Slopes: "solicitation" (X) ==> "posstatus" (Y)
## (Conditional Direct Effects [c'] of X on Y)
## ────────────────────────────────────────────────────────────
## "confronter" Effect S.E. t p [95% CI]
## ────────────────────────────────────────────────────────────
## Man 0.117 (0.119) 0.987 .324 [-0.116, 0.350]
## Woman 0.366 (0.117) 3.125 .002 ** [ 0.136, 0.596]
## ────────────────────────────────────────────────────────────
##
## Interaction Effect on "agency" (M)
## ─────────────────────────────────────────────────
## F df1 df2 p
## ─────────────────────────────────────────────────
## solicitation * confronter 0.34 1 427 .559
## ─────────────────────────────────────────────────
##
## Simple Slopes: "solicitation" (X) ==> "agency" (M)
## (Conditional Effects [a] of X on M)
## ───────────────────────────────────────────────────────────
## "confronter" Effect S.E. t p [95% CI]
## ───────────────────────────────────────────────────────────
## Man 0.711 (0.200) 3.560 <.001 *** [0.318, 1.104]
## Woman 0.546 (0.199) 2.745 .006 ** [0.155, 0.938]
## ───────────────────────────────────────────────────────────
##
## Interaction Effect on "posstatus" (Y)
## ─────────────────────────────────────────────────
## F df1 df2 p
## ─────────────────────────────────────────────────
## solicitation * confronter 2.23 1 425 .136
## confronter * agency 4.90 1 425 .027 *
## (All Interactions) 3.00 2 425 .051 .
## ─────────────────────────────────────────────────
##
## Simple Slopes: "agency" (M) ==> "posstatus" (Y)
## (Conditional Effects [b] of M on Y)
## ────────────────────────────────────────────────────────────
## "confronter" Effect S.E. t p [95% CI]
## ────────────────────────────────────────────────────────────
## Man 0.697 (0.039) 18.059 <.001 *** [0.621, 0.773]
## Woman 0.573 (0.041) 14.154 <.001 *** [0.494, 0.653]
## ────────────────────────────────────────────────────────────
##
## Running 1000 * 2 simulations...
## Indirect Path: "solicitation" (X) ==> "agency" (M) ==> "posstatus" (Y)
## (Conditional Indirect Effects [ab] of X through M on Y)
## ────────────────────────────────────────────────────────────
## "confronter" Effect S.E. z p [Boot 95% CI]
## ────────────────────────────────────────────────────────────
## Man 0.496 (0.146) 3.407 <.001 *** [ 0.222, 0.793]
## Woman 0.313 (0.111) 2.833 .005 ** [0.111, 0.529]
## ────────────────────────────────────────────────────────────
## Percentile Bootstrap Confidence Interval
## (SE and CI are estimated based on 1000 Bootstrap samples.)
##
## Note. The results based on bootstrapping or other random processes
## are unlikely identical to other statistical software (e.g., SPSS).
## To make results reproducible, you need to set a seed (any number).
## Please see the help page for details: help(PROCESS)
## Ignore this note if you have already set a seed. :)
bruceR::PROCESS(
data = diffidp3raw,
mods = "solicitation",
x = "confronter",
meds = "agency",
y = "posstatus",
mod.path = "all", seed = 1, nsim = 1000
)
##
## ****************** PART 1. Regression Model Summary ******************
##
## PROCESS Model ID : 59
## Model Type : Moderated Mediation
## - Outcome (Y) : posstatus
## - Predictor (X) : confronter (recoded: Woman=0, Man=1)
## - Mediators (M) : agency
## - Moderators (W) : solicitation
## - Covariates (C) : -
## - HLM Clusters : -
##
## All numeric predictors have been grand-mean centered.
## (For details, please see the help page of PROCESS.)
##
## Formula of Mediator:
## - agency ~ confronter*solicitation
## Formula of Outcome:
## - posstatus ~ confronter*solicitation + agency*solicitation
##
## CAUTION:
## Fixed effect (coef.) of a predictor involved in an interaction
## denotes its "simple effect/slope" at the other predictor = 0.
## Only when all predictors in an interaction are mean-centered
## can the fixed effect be interpreted as "main effect"!
##
## Model Summary
##
## ────────────────────────────────────────────────────────────────────────────────
## (1) posstatus (2) agency (3) posstatus
## ────────────────────────────────────────────────────────────────────────────────
## (Intercept) 1.625 *** 4.537 *** 1.517 ***
## (0.063) (0.101) (0.060)
## confronter -0.467 *** -0.712 *** 0.042
## (0.125) (0.202) (0.120)
## solicitationNoSolicitation 0.629 *** 0.245 **
## (0.141) (0.083)
## confronter:solicitationNoSolicitation 0.165 -0.238
## (0.282) (0.167)
## agency 0.690 ***
## (0.039)
## solicitationNoSolicitation:agency -0.106
## (0.056)
## ────────────────────────────────────────────────────────────────────────────────
## R^2 0.031 0.084 0.593
## Adj. R^2 0.029 0.077 0.588
## Num. obs. 431 431 431
## ────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
##
## ************ PART 2. Mediation/Moderation Effect Estimate ************
##
## Package Use : ‘mediation’ (v4.5.1), ‘interactions’ (v1.2.0)
## Effect Type : Moderated Mediation (Model 59)
## Sample Size : 431
## Random Seed : set.seed(1)
## Simulations : 1000 (Bootstrap)
##
## Interaction Effect on "posstatus" (Y)
## ─────────────────────────────────────────────────
## F df1 df2 p
## ─────────────────────────────────────────────────
## confronter * solicitation 2.04 1 425 .154
## solicitation * agency 3.62 1 425 .058 .
## (All Interactions) 2.36 2 425 .096 .
## ─────────────────────────────────────────────────
##
## Simple Slopes: "confronter" (X) ==> "posstatus" (Y)
## (Conditional Direct Effects [c'] of X on Y)
## ───────────────────────────────────────────────────────────────
## "solicitation" Effect S.E. t p [95% CI]
## ───────────────────────────────────────────────────────────────
## NoSolicitation -0.197 (0.116) -1.696 .091 . [-0.424, 0.031]
## Solicitation 0.042 (0.120) 0.347 .729 [-0.194, 0.278]
## ───────────────────────────────────────────────────────────────
##
## Interaction Effect on "agency" (M)
## ─────────────────────────────────────────────────
## F df1 df2 p
## ─────────────────────────────────────────────────
## confronter * solicitation 0.34 1 427 .559
## ─────────────────────────────────────────────────
##
## Simple Slopes: "confronter" (X) ==> "agency" (M)
## (Conditional Effects [a] of X on M)
## ────────────────────────────────────────────────────────────────
## "solicitation" Effect S.E. t p [95% CI]
## ────────────────────────────────────────────────────────────────
## NoSolicitation -0.547 (0.197) -2.781 .006 ** [-0.934, -0.161]
## Solicitation -0.712 (0.202) -3.527 <.001 *** [-1.109, -0.315]
## ────────────────────────────────────────────────────────────────
##
## Interaction Effect on "posstatus" (Y)
## ─────────────────────────────────────────────────
## F df1 df2 p
## ─────────────────────────────────────────────────
## confronter * solicitation 2.04 1 425 .154
## solicitation * agency 3.62 1 425 .058 .
## (All Interactions) 2.36 2 425 .096 .
## ─────────────────────────────────────────────────
##
## Simple Slopes: "agency" (M) ==> "posstatus" (Y)
## (Conditional Effects [b] of M on Y)
## ──────────────────────────────────────────────────────────────
## "solicitation" Effect S.E. t p [95% CI]
## ──────────────────────────────────────────────────────────────
## NoSolicitation 0.584 (0.040) 14.565 <.001 *** [0.505, 0.662]
## Solicitation 0.690 (0.039) 17.649 <.001 *** [0.613, 0.767]
## ──────────────────────────────────────────────────────────────
##
## Running 1000 * 2 simulations...
## Indirect Path: "confronter" (X) ==> "agency" (M) ==> "posstatus" (Y)
## (Conditional Indirect Effects [ab] of X through M on Y)
## ────────────────────────────────────────────────────────────────
## "solicitation" Effect S.E. z p [Boot 95% CI]
## ────────────────────────────────────────────────────────────────
## NoSolicitation -0.319 (0.117) -2.725 .006 ** [-0.554, -0.096]
## Solicitation -0.492 (0.156) -3.150 .002 ** [-0.814, -0.209]
## ────────────────────────────────────────────────────────────────
## Percentile Bootstrap Confidence Interval
## (SE and CI are estimated based on 1000 Bootstrap samples.)
##
## Note. The results based on bootstrapping or other random processes
## are unlikely identical to other statistical software (e.g., SPSS).
## To make results reproducible, you need to set a seed (any number).
## Please see the help page for details: help(PROCESS)
## Ignore this note if you have already set a seed. :)
Main effects (controlling)
VariableLevel | comp | fsr | token | empower | agency | warm | reward | socreward | posstatus |
---|---|---|---|---|---|---|---|---|---|
(Intercept) | 4.81*** | 2.51*** | 2.88*** | 4.7*** | 4.85*** | 4.05*** | 0.61*** | 1.07*** | 1.54*** |
solicitationNoSolicitation | 0.47** | -0.32* | -0.43** | 0.65*** | 0.63*** | 0.71*** | 0.43*** | 0.63*** | 0.65*** |
confronterMan | -0.34* | 0.34* | 0.39** | -0.46** | -0.63*** | -0.04 | -0.18 | -0.47*** | -0.48*** |
Responses
Paul
All comparisons
##
## Call:
## glm(formula = response_paul ~ confronter * solicitation, family = "binomial",
## data = diffidp3raw)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.00000000000000158 0.19245008972987687 0.00 1.00
## confronterMan -0.29924289485285316 0.27844969070526332 -1.07 0.28
## solicitationNoSolicitation -0.03704127168034663 0.27218886778697915 -0.14 0.89
## confronterMan:solicitationNoSolicitation -0.26529582050120976 0.39151321422434310 -0.68 0.50
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 590.28 on 429 degrees of freedom
## Residual deviance: 584.05 on 426 degrees of freedom
## (1 observation deleted due to missingness)
## AIC: 592.1
##
## Number of Fisher Scoring iterations: 4
Controls
##
## Call:
## glm(formula = response_paul ~ confronter * empower_exp_4.1 +
## solicitation, family = "binomial", data = diffidp3raw)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.5214 0.4413 -3.45 0.00057 ***
## confronterMan 0.6943 0.5680 1.22 0.22155
## empower_exp_4.1 0.3396 0.0846 4.02 0.000059 ***
## solicitationNoSolicitation -0.3889 0.2078 -1.87 0.06127 .
## confronterMan:empower_exp_4.1 -0.2090 0.1108 -1.89 0.05921 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 590.28 on 429 degrees of freedom
## Residual deviance: 564.05 on 425 degrees of freedom
## (1 observation deleted due to missingness)
## AIC: 574.1
##
## Number of Fisher Scoring iterations: 4
## (Intercept) confronterMan solicitationNoSolicitation
## 1.0663 0.6480 0.8475
##
## Call:
## glm(formula = response_paul ~ solicitation, family = "binomial",
## data = diffidp3raw %>% filter(confronter == "Woman"))
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.000000000000000986 0.192450089729875234 0.00 1.00
## solicitationNoSolicitation -0.037041271680342908 0.272188866933747442 -0.14 0.89
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 299.42 on 215 degrees of freedom
## Residual deviance: 299.40 on 214 degrees of freedom
## AIC: 303.4
##
## Number of Fisher Scoring iterations: 3
##
## Call:
## glm(formula = response_paul ~ solicitation, family = "binomial",
## data = diffidp3raw %>% filter(confronter == "Man"))
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.299 0.201 -1.49 0.14
## solicitationNoSolicitation -0.302 0.281 -1.07 0.28
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 285.81 on 213 degrees of freedom
## Residual deviance: 284.65 on 212 degrees of freedom
## (1 observation deleted due to missingness)
## AIC: 288.7
##
## Number of Fisher Scoring iterations: 4
Confronter
All comparisons
##
## Call:
## glm(formula = response_confronter ~ confronter * solicitation,
## family = "binomial", data = diffidp3raw)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.2607 0.1941 1.34 0.18
## confronterMan 0.0556 0.2791 0.20 0.84
## solicitationNoSolicitation 0.1525 0.2762 0.55 0.58
## confronterMan:solicitationNoSolicitation -0.2735 0.3902 -0.70 0.48
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 588.25 on 430 degrees of freedom
## Residual deviance: 587.57 on 427 degrees of freedom
## AIC: 595.6
##
## Number of Fisher Scoring iterations: 4
Controls
##
## Call:
## glm(formula = response_confronter ~ confronter + solicitation,
## family = "binomial", data = diffidp3raw)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.3288 0.1689 1.95 0.052 .
## confronterMan -0.0844 0.1949 -0.43 0.665
## solicitationNoSolicitation 0.0154 0.1949 0.08 0.937
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 588.25 on 430 degrees of freedom
## Residual deviance: 588.06 on 428 degrees of freedom
## AIC: 594.1
##
## Number of Fisher Scoring iterations: 4
## (Intercept) confronterMan solicitationNoSolicitation
## 1.3893 0.9191 1.0155
##
## Call:
## glm(formula = response_confronter ~ solicitation, family = "binomial",
## data = diffidp3raw %>% filter(confronter == "Woman"))
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.261 0.194 1.34 0.18
## solicitationNoSolicitation 0.152 0.276 0.55 0.58
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 293.41 on 215 degrees of freedom
## Residual deviance: 293.11 on 214 degrees of freedom
## AIC: 297.1
##
## Number of Fisher Scoring iterations: 4
##
## Call:
## glm(formula = response_confronter ~ solicitation, family = "binomial",
## data = diffidp3raw %>% filter(confronter == "Man"))
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.316 0.201 1.58 0.11
## solicitationNoSolicitation -0.121 0.276 -0.44 0.66
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 294.65 on 214 degrees of freedom
## Residual deviance: 294.46 on 213 degrees of freedom
## AIC: 298.5
##
## Number of Fisher Scoring iterations: 4
Social Rewards