Data Exploration

Exercises ~ Week 3

Logo


1 Exercise 1

The following table shows sample information for three students. Each observation represents a single student and includes details such as their unique student ID, name, age, total credits completed, major field of study, and year level.

This dataset demonstrates a mixture of variable types:

  • Nominal: StudentID, Name, Major
  • Numeric: Age (continuous), CreditsCompleted (discrete)
  • Ordinal: YearLevel (Freshman → Senior)
StudentID Name Age CreditsCompleted Major YearLevel
S001 Alice 20 45 Data Sains Sophomore
S002 Budi 21 60 Mathematics Junior
S003 Citra 19 30 Statistics Freshman
# 1. Create vectors for each variable
StudentID <- c("S001", "S002", "S003")       # Nominal / ID
Name <- c("Alice", "Budi", "Citra")          # Nominal / Name
Age <- c(20, 21, 19)                         # Numeric / Continuous
CreditsCompleted <- c(45, 60, 30)            # Numeric / Discrete

# Nominal
Major <- c("Data Sains", "Mathematics", "Statistics")  

# Ordinal
YearLevel <- factor(c("Sophomore", "Junior", "Freshman"),
                    levels = c("Freshman","Sophomore","Junior","Senior"),
                    ordered = TRUE)          

# 2. Combine all vectors into a data frame
students <- data.frame(
  StudentID, Name, Age, CreditsCompleted, Major, YearLevel,
  stringsAsFactors = FALSE
)

# 3. Display the data frame
print(students)
##   StudentID  Name Age CreditsCompleted       Major YearLevel
## 1      S001 Alice  20               45  Data Sains Sophomore
## 2      S002  Budi  21               60 Mathematics    Junior
## 3      S003 Citra  19               30  Statistics  Freshman

2 Exercise 2

Identify Data Types: Determine the type of data for each of the following variables:

# Install knitr package if not already installed
# install.packages("knitr")
library(knitr)

# Create a data frame for Data Types
variables_info <- data.frame(
  No = 1:5,
  Variable = c(
    "Number of vehicles passing through the toll road each day",
    "Student height in cm",
    "Employee gender (Male / Female)",
    "Customer satisfaction level: Low, Medium, High",
    "Respondent's favorite color: Red, Blue, Green"
  ),
  DataType = c(
    "Quantitative",
    "Quantitative",
    "Quantitative",
    "Qualitative",
    "Qualitative"
  ),
  Subtype = c(
    "Diskrete",
    "Continuous",
    "Nominal",
    "Ordinal",
    "Nominal"
  ),
  stringsAsFactors = FALSE
)

# Display the data frame as a neat table
kable(variables_info, 
      caption = "Table of Variables and Data Types")
Table of Variables and Data Types
No Variable DataType Subtype
1 Number of vehicles passing through the toll road each day Quantitative Diskrete
2 Student height in cm Quantitative Continuous
3 Employee gender (Male / Female) Quantitative Nominal
4 Customer satisfaction level: Low, Medium, High Qualitative Ordinal
5 Respondent’s favorite color: Red, Blue, Green Qualitative Nominal

3 Exercise 3

Classify Data Sources: Determine whether the following data comes from internal or external sources, and whether it is structured or unstructured:

# Install DT package if not already installed
# install.packages("DT") 
library(DT)

# Create a data frame for data sources 
data_sources <- data.frame(
  No = 1:4,
  DataSource = c(
    "Daily sales transaction data of the company",
    "Weather reports from BMKG",
    "Product reviews on social media",
    "Warehouse inventory reports"
  ),
  Internal_External = c(
    "Internal",
    "Eksternal",
    "Eksternal",
    "Internal"
  ),
  Structured_Unstructured = c(
    "Structured",
    "Structured",
    "Unstructured",
    "Structured"
  ),
  stringsAsFactors = FALSE
)

# Display the data frame as a neat table
datatable(data_sources, 
          caption = "Table of Data Sources",
          rownames = FALSE) # hides the index column

4 Exercise 4

Dataset Structure: Consider the following transaction table:

Date Quantity Price Product CustomerTier
2025-10-01 2 1000 Laptop High
2025-10-01 5 20 Mouse Medium
2025-10-02 1 1000 Laptop Low
2025-10-02 3 30 Keyboard Medium
2025-10-03 4 50 Mouse Medium
2025-10-03 2 1000 Laptop High
2025-10-04 6 25 Keyboard Low
2025-10-04 1 1000 Laptop High
2025-10-05 3 40 Mouse Low
2025-10-05 5 10 Keyboard Medium

Your Assignment Instructions: Creating a Transactions Table above in R

  1. Create a data frame in R called transactions containing the data above.

  2. Identify which variables are numeric and which are categorical

  3. Calculate total revenue for each transaction by multiplying Qty × Price and add it as a new column Total.

  4. Compute summary statistics:

    • Total quantity sold for each product
    • Total revenue per product
    • Average price per product
  5. Visualize the data:

    • Create a barplot showing total quantity sold per product.
    • Create a pie chart showing the proportion of total revenue per customer tier.
  6. Optional Challenge:

    • Find which date had the highest total revenue.
    • Create a stacked bar chart showing quantity sold per product by customer tier.

Hints: Use data.frame(), aggregate(), barplot(), pie(), and basic arithmetic operations in R.

# Create Data Frame  Transaction
library(DT)
library(knitr)

transactions <- data.frame(
  No = 1:10,
  Date = as.Date(c("2025-10-01", "2025-10-01","2025-10-02", "2025-10-02", "2025-10-03",                       "2025-10-03", "2025-10-04", "2025-10-04", "2025-10-05", "2025-10-05")),
  Quantity = c(2, 5, 1, 3, 4, 2, 6, 1, 3, 5),
  Price = c(1000, 20, 1000, 30, 50, 1000, 25, 1000, 40, 10),
  Product = c("Laptop", "Mouse", "Laptop", "Keyboard", "Mouse", "Laptop", "Keyboard",                    "Laptop", "Mouse", "Keyboard"),
  CustomerTier = factor(c("High", "Medium", "Low", "Medium",                                                         "Medium", "High", "Low", "High", "Low", "Medium"),
  levels = c("Low", "Medium", "High"), ordered = TRUE)
)

transactions$Total <- transactions$Quantity * transactions$Price

str(transactions)
## 'data.frame':    10 obs. of  7 variables:
##  $ No          : int  1 2 3 4 5 6 7 8 9 10
##  $ Date        : Date, format: "2025-10-01" "2025-10-01" ...
##  $ Quantity    : num  2 5 1 3 4 2 6 1 3 5
##  $ Price       : num  1000 20 1000 30 50 1000 25 1000 40 10
##  $ Product     : chr  "Laptop" "Mouse" "Laptop" "Keyboard" ...
##  $ CustomerTier: Ord.factor w/ 3 levels "Low"<"Medium"<..: 3 2 1 2 2 3 1 3 1 2
##  $ Total       : num  2000 100 1000 90 200 2000 150 1000 120 50
datatable(transactions,
          rownames = FALSE,
          caption = htmltools::tags$strong("Transactions Table")
)
   #create data frame of category variable
library(DT)

categoryVariable <- data.frame(
      Category = c("Date", "Quantity", "Price", "Product",                              "CustomersTier"),
      Variable = c("Categorical (Date)", 
                   "Numeric (Discrete)", 
                   "Numeric(Continuous)", 
                   "Categorical (Nominal)", 
                   "Categorical (Ordinal)"),
      stringsAsFactors = FALSE)
                  
str(categoryVariable)
## 'data.frame':    5 obs. of  2 variables:
##  $ Category: chr  "Date" "Quantity" "Price" "Product" ...
##  $ Variable: chr  "Categorical (Date)" "Numeric (Discrete)" "Numeric(Continuous)" "Categorical (Nominal)" ...
datatable(categoryVariable,
          caption = htmltools::tags$strong("Identification                                               Table"))
 # create data frame of total quantity
library(DT)

totalQuantity <- aggregate(Quantity ~ Product, data = transactions, sum)

str(totalQuantity)
## 'data.frame':    3 obs. of  2 variables:
##  $ Product : chr  "Keyboard" "Laptop" "Mouse"
##  $ Quantity: num  14 6 12
datatable(totalQuantity,
          rownames = FALSE,
          caption = htmltools::tags$strong("Total Quantity                                                Table")
)
 # create data frame of total reveneu
library(DT)

totalRevenue <- aggregate(Total ~ Product, data = transactions, mean)

str(totalRevenue)
## 'data.frame':    3 obs. of  2 variables:
##  $ Product: chr  "Keyboard" "Laptop" "Mouse"
##  $ Total  : num  96.7 1500 140
datatable(totalRevenue,
          rownames = FALSE,
          caption = htmltools::tags$strong("Total Reveneu                                                Table")
)
 # create data frame of avarange price
avarangePrice <- aggregate(Price ~ Product, data = transactions, mean)

str(avarangePrice)
## 'data.frame':    3 obs. of  2 variables:
##  $ Product: chr  "Keyboard" "Laptop" "Mouse"
##  $ Price  : num  21.7 1000 36.7
datatable(avarangePrice,
          rownames = FALSE,
          caption = htmltools::tags$strong("Avarange Price                                               Table")
)
 # create barplot of date
quantityColors <- c("#a6cba9", "#ecd59f", "#a0ced9")

barplot(totalQuantity$Quantity,
        names.arg = totalQuantity$Product,
        main = "Total Quantity Sold per Product",
        xlab = "Product",
        ylab = "Total Quantity Sold",
        col = quantityColors,
        border = "black")

pie_colors <- c("#cdb4db", "#eba7ac", "#a4c0d6")

revenueTier <- aggregate(Total ~ CustomerTier, data = transactions, sum)

pie(revenueTier$Total, 
    labels = paste(revenueTier$CustomerTier, "-", revenueTier$Total),
    main = "Total Revenue by Customer Tier",
    col = pie_colors)

5 Exercise 5

Create Your Own Data Frame:

Objective: Create a data frame in R with 30 rows containing a mix of data types: continuous, discrete, nominal, and ordinal.

### Instructions

  1. Open RStudio or the R console.

  2. Create a vector for each column in your data frame:

    • Date: 30 dates (can be sequential or random within a month/year)
    • Continuous: numeric values that can take decimal values (e.g., height, weight, temperature)
    • Discrete: numeric values that can only take whole numbers (e.g., number of items, number of vehicles)
    • Nominal: categorical values with no order (e.g., color, gender, city)
    • Ordinal: categorical values with a defined order (e.g., Low, Medium, High; Beginner, Intermediate, Expert)
  3. Combine all vectors into a data frame called my_data.

  4. Check your data frame using head() or View() to ensure it has 30 rows and the columns are correct.

  5. Optional tasks:

    • Summarize each column using summary()
    • Count the frequency of each category for Nominal and Ordinal columns using table()

### Hints

  • Use seq.Date() or as.Date() to generate the Date column.

  • Use runif() or rnorm() for continuous numeric data.

  • Use sample() for discrete, nominal, and ordinal data.

  • Ensure the ordinal vector is created with factor(..., levels = c("Low","Medium","High"), ordered = TRUE) (or similar).

    data set Structure tabel pertumbuhan tinggi badan dengan hubungan waktu tidur :

Tanggal Jumlah Reponden Tinggi Badan Waktu Tidur (Jam) Tingkat Kepuasan
2024-05-03 1 160.00 6 Cukup
2024-05-06 1 160.03 7 Puas
2024-05-09 1 160.06 7 Puas
2024-05-12 1 160.11 8 Sangat Puas
2024-05-15 1 160.12 6 Cukup
2024-05-18 1 160.12 7 Puas
2024-05-21 1 160.15 5 Kurang Puas
2024-05-24 1 160.15 7 Puas
2024-05-27 1 160.18 8 Sangat Puas
2024-05-30 1 160.23 7 Puas
2024-06-03 1 160.26 6 Cukup
2024-06-06 1 160.27 7 Puas
2024-06-09 1 160.30 5 Kurang Puas
2024-06-12 1 160.35 8 Sangat Puas
2024-06-15 1 160.38 7 Puas
2024-06-18 1 160.43 8 Sangat Puas
2024-06-21 1 160.44 6 Cukup
2024-06-24 1 160.47 7 Puas
2024-06-27 1 160.47 5 Kurang Puas
2024-06-30 1 160.52 8 Sangat Puas
2024-07-03 1 160.55 7 Puas
2024-07-06 1 160.56 6 Cukup
2024-07-09 1 160.59 7 Puas
2024-07-12 1 160.64 8 Sangat Puas
2024-07-15 1 160.65 6 Cukup
2024-07-18 1 160.68 7 Puas
2024-07-21 1 160.73 8 Sangat Puas
2024-07-24 1 160.76 7 Puas
2024-07-27 1 160.76 5 Kurang Puas
2024-07-30 1 160.81 8 Sangat Puas
# Create Data Frame "pertumbuhan tinggi badan" table
set.seed(123) # tetap ada seed untuk reproducibility

my_data <- data.frame(
  No = 1:30,
  Tanggal = seq.Date(as.Date("2024-05-03"), by = "3 day", length.out = 30),
  jumlah_responden = rep(1, 30),
  tinggi_badan = round(160 + (0:29) * ((160.81 - 160.00) /29) + runif(30, 
                 min = 0, max = 0.0001), 2),
  waktu_tidur = factor(c(6,7,7,8,6,7,5,7,8,7,6,7,5,8,7,8,6,7,5,8,7,6,7,8,6,7,8,7,5,8)),
  tingkat_kepuasan = factor(c("Cukup", "Puas", "Puas", "Sangat Puas", "Cukup",                                  "Puas", "Kurang Puas", "Puas", "Sangat Puas",                                     "Puas", "Cukup", "Puas", "Kurang Puas", "Sangat                                   Puas","Puas", "Sangat Puas", "Cukup", "Puas",                                     "Kurang Puas", "Sangat Puas", "Puas", "Cukup",                                    "Puas", "Sangat Puas", "Cukup", "Puas", "Sangat                                   Puas", "Puas", "Kurang Puas", "Sangat Puas"),
  levels = c("Kurang Puas", "Cukup", "Puas", "Sangat Puas"),
  ordered = TRUE)
)

head(my_data, 30, row.names = FALSE)
 # summary statistic
summary(my_data)
##        No           Tanggal           jumlah_responden  tinggi_badan  
##  Min.   : 1.00   Min.   :2024-05-03   Min.   :1        Min.   :160.0  
##  1st Qu.: 8.25   1st Qu.:2024-05-24   1st Qu.:1        1st Qu.:160.2  
##  Median :15.50   Median :2024-06-15   Median :1        Median :160.4  
##  Mean   :15.50   Mean   :2024-06-15   Mean   :1        Mean   :160.4  
##  3rd Qu.:22.75   3rd Qu.:2024-07-07   3rd Qu.:1        3rd Qu.:160.6  
##  Max.   :30.00   Max.   :2024-07-29   Max.   :1        Max.   :160.8  
##  waktu_tidur    tingkat_kepuasan
##  5: 4        Kurang Puas: 4     
##  6: 6        Cukup      : 6     
##  7:12        Puas       :12     
##  8: 8        Sangat Puas: 6     
##              NA's       : 2     
## 
 # frekuensi of category (Nominal / Ordinal)
table(my_data$tingkat_kepuasan)
## 
## Kurang Puas       Cukup        Puas Sangat Puas 
##           4           6          12           6