Data Exploration

Exercises ~ Week 2

Logo


1 Exercise 1

The following table shows sample information for three students. Each observation represents a single student and includes details such as their unique student ID, name, age, total credits completed, major field of study, and year level.

This dataset demonstrates a mixture of variable types:

  • Nominal: StudentID, Name, Major
  • Numeric: Age (continuous), CreditsCompleted (discrete)
  • Ordinal: YearLevel (Freshman → Senior)
StudentID Name Age CreditsCompleted Major YearLevel
S001 Alice 20 45 Data Sains Sophomore
S002 Budi 21 60 Mathematics Junior
S003 Citra 19 30 Statistics Freshman
# 1. Create vectors for each variable
StudentID <- c("S001", "S002", "S003")       # Nominal / ID
Name <- c("Alice", "Budi", "Citra")          # Nominal / Name
Age <- c(20, 21, 19)                         # Numeric / Continuous
CreditsCompleted <- c(45, 60, 30)            # Numeric / Discrete

# Nominal
Major <- c("Data Sains", "Mathematics", "Statistics")  

# Ordinal
YearLevel <- factor(c("Sophomore", "Junior", "Freshman"),
                    levels = c("Freshman","Sophomore","Junior","Senior"),
                    ordered = TRUE)          

# 2. Combine all vectors into a data frame
students <- data.frame(
  StudentID, Name, Age, CreditsCompleted, Major, YearLevel,
  stringsAsFactors = FALSE
)

# 3. Display the data frame
print(students)
##   StudentID  Name Age CreditsCompleted       Major YearLevel
## 1      S001 Alice  20               45  Data Sains Sophomore
## 2      S002  Budi  21               60 Mathematics    Junior
## 3      S003 Citra  19               30  Statistics  Freshman

2 Exercise 2

Identify Data Types: Determine the type of data for each of the following variables:

# Install knitr package if not already installed
# install.packages("knitr")
library(knitr)

# Create a data frame for Data Types
variables_info <- data.frame(
  No = 1:5,
  Variable = c(
    "Number of vehicles passing through the toll road each day",
    "Student height in cm",
    "Employee gender (Male / Female)",
    "Customer satisfaction level: Low, Medium, High",
    "Respondent's favorite color: Red, Blue, Green"
  ),
  DataType = c(
    "Quantitative",
    "Quantitative",
    "Quantitative",
    "Qualitative",
    "Qualitative"
  ),
  Subtype = c(
    "Diskrete",
    "Continuous",
    "Nominal",
    "Ordinal",
    "Nominal"
  ),
  stringsAsFactors = FALSE
)

# Display the data frame as a neat table
kable(variables_info, 
      caption = "Table of Variables and Data Types")
Table of Variables and Data Types
No Variable DataType Subtype
1 Number of vehicles passing through the toll road each day Quantitative Diskrete
2 Student height in cm Quantitative Continuous
3 Employee gender (Male / Female) Quantitative Nominal
4 Customer satisfaction level: Low, Medium, High Qualitative Ordinal
5 Respondent’s favorite color: Red, Blue, Green Qualitative Nominal

3 Exercise 3

Classify Data Sources: Determine whether the following data comes from internal or external sources, and whether it is structured or unstructured:

# Install DT package if not already installed
# install.packages("DT")
library(DT)

# Create a data frame for data sources 
data_sources <- data.frame(
  No = 1:4,
  DataSource = c(
    "Daily sales transaction data of the company",
    "Weather reports from BMKG",
    "Product reviews on social media",
    "Warehouse inventory reports"
  ),
  Internal_External = c(
    "Internal",
    "Eksternal",
    "Eksternal",
    "Internal"
  ),
  Structured_Unstructured = c(
    "Structured",
    "Structured",
    "Unstructured",
    "Structured"
  ),
  stringsAsFactors = FALSE
)

# Display the data frame as a neat table
datatable(data_sources, 
          caption = "Table of Data Sources",
          rownames = FALSE) # hides the index column

4 Exercise 4

Dataset Structure: Consider the following transaction table:

Date Qty Price Product CustomerTier
2025-10-01 2 1000 Laptop High
2025-10-01 5 20 Mouse Medium
2025-10-02 1 1000 Laptop Low
2025-10-02 3 30 Keyboard Medium
2025-10-03 4 50 Mouse Medium
2025-10-03 2 1000 Laptop High
2025-10-04 6 25 Keyboard Low
2025-10-04 1 1000 Laptop High
2025-10-05 3 40 Mouse Low
2025-10-05 5 10 Keyboard Medium

Your Assignment Instructions: Creating a Transactions Table above in R

  1. Create a data frame in R called transactions containing the data above.

  2. Identify which variables are numeric and which are categorical

  3. Calculate total revenue for each transaction by multiplying Qty × Price and add it as a new column Total.

  4. Compute summary statistics:

    • Total quantity sold for each product
    • Total revenue per product
    • Average price per product
  5. Visualize the data:

    • Create a barplot showing total quantity sold per product.
    • Create a pie chart showing the proportion of total revenue per customer tier.
  6. Optional Challenge:

    • Find which date had the highest total revenue.
    • Create a stacked bar chart showing quantity sold per product by customer tier.

Hints: Use data.frame(), aggregate(), barplot(), pie(), and basic arithmetic operations in R.

4.1 Create Data Frame

transactions <- data.frame(
  Date = as.Date(c ("2025-10-01", "2025-10-01", "2025-10-02", "2025-10-02", 
                "2025-10-03", "2025-10-03", "2025-10-04", "2025-10-04",
                "2025-10-05", "2025-10-05")),
  Qty = c(2, 5, 1, 3, 4, 2, 6, 1, 3, 5),
  Price = c(1000, 20, 1000, 30, 50, 1000, 25, 1000, 40, 10),
  Product = c("Laptop", "Mouse", "Laptop", "Keyboard", "Mouse",
              "Laptop", "Keyboard", "Laptop", "Mouse", "Keyboard"),
  CustomerTier = c("High", "Medium", "Low", "Medium", "Medium",
                   "High", "Low", "High", "Low", "Medium"),
  stringsAsFactors = FALSE)

# View the dataset contents
kable(transactions,
      caption = "Transactions Data by Customer Tier")
Transactions Data by Customer Tier
Date Qty Price Product CustomerTier
2025-10-01 2 1000 Laptop High
2025-10-01 5 20 Mouse Medium
2025-10-02 1 1000 Laptop Low
2025-10-02 3 30 Keyboard Medium
2025-10-03 4 50 Mouse Medium
2025-10-03 2 1000 Laptop High
2025-10-04 6 25 Keyboard Low
2025-10-04 1 1000 Laptop High
2025-10-05 3 40 Mouse Low
2025-10-05 5 10 Keyboard Medium

4.2 Identify data types

str(transactions)  # Look at the (numeric vs categorical)
## 'data.frame':    10 obs. of  5 variables:
##  $ Date        : Date, format: "2025-10-01" "2025-10-01" ...
##  $ Qty         : num  2 5 1 3 4 2 6 1 3 5
##  $ Price       : num  1000 20 1000 30 50 1000 25 1000 40 10
##  $ Product     : chr  "Laptop" "Mouse" "Laptop" "Keyboard" ...
##  $ CustomerTier: chr  "High" "Medium" "Low" "Medium" ...

4.3 Add a Total column

transactions$Total <- transactions$Qty * transactions$Price

4.4 View results

print(transactions)
##          Date Qty Price  Product CustomerTier Total
## 1  2025-10-01   2  1000   Laptop         High  2000
## 2  2025-10-01   5    20    Mouse       Medium   100
## 3  2025-10-02   1  1000   Laptop          Low  1000
## 4  2025-10-02   3    30 Keyboard       Medium    90
## 5  2025-10-03   4    50    Mouse       Medium   200
## 6  2025-10-03   2  1000   Laptop         High  2000
## 7  2025-10-04   6    25 Keyboard          Low   150
## 8  2025-10-04   1  1000   Laptop         High  1000
## 9  2025-10-05   3    40    Mouse          Low   120
## 10 2025-10-05   5    10 Keyboard       Medium    50

4.5 Summary Statistics

### Total quantity sold per product
total_qty <- aggregate(Qty ~ Product, data = transactions, sum)

### Total revenue per product
total_revenue <- aggregate(Total ~ Product, data = transactions, sum)

### Average price per product
avg_price <- aggregate(Price ~ Product, data = transactions, mean)

4.6 Show summary results

cat("\n Total Quantity per Product \n")
## 
##  Total Quantity per Product
print(total_qty)
##    Product Qty
## 1 Keyboard  14
## 2   Laptop   6
## 3    Mouse  12
cat("\n Total Revenue per Product \n")
## 
##  Total Revenue per Product
print(total_revenue)
##    Product Total
## 1 Keyboard   290
## 2   Laptop  6000
## 3    Mouse   420
cat("\n Average Price per Product \n")
## 
##  Average Price per Product
print(avg_price)
##    Product      Price
## 1 Keyboard   21.66667
## 2   Laptop 1000.00000
## 3    Mouse   36.66667

4.7 Visualization

### (a) Barplot - total quantity sold per product
barplot(
  total_qty$Qty,
  names.arg = total_qty$Product,
  main = "Total Quantity Sold per Product",
  xlab = "Product",
  ylab = "Total Quantity",
  col = c("skyblue", "lightgreen", "orange")
)

### (b) Pie chart - proportion of total revenue per Customer Tier
revenue_tier <- aggregate(Total ~ CustomerTier, data = transactions, sum)
pie(
  revenue_tier$Total,
  labels = paste(revenue_tier$CustomerTier, "-", revenue_tier$Total),
  main = "Proportion of Total Revenue per Customer Tier",
  col = c("gold", "lightblue", "tomato")
)

4.8 Optional Challenge

### (a) Date with highest total revenue
date_revenue <- aggregate(Total ~ Date, data = transactions, sum)
max_rev_date <- date_revenue[which.max(date_revenue$Total), ]
cat("\nDate with highest total revenue:\n")
## 
## Date with highest total revenue:
print(max_rev_date)
##         Date Total
## 3 2025-10-03  2200
### (b) Stacked bar chart: quantity sold per product by customer tier
qty_stack <- aggregate(Qty ~ Product + CustomerTier, data = transactions, sum)
qty_matrix <- xtabs(Qty ~ CustomerTier + Product, data = qty_stack)
barplot(
  qty_matrix,
  beside = FALSE,
  main = "Quantity Sold per Product by Customer Tier",
  xlab = "Product",
  ylab = "Quantity Sold",
  col = c("lightblue", "gold", "tomato")
)
legend("topright", legend = rownames(qty_matrix),
       fill = c("lightblue", "gold", "tomato"), title = "Customer Tier")

5 Exercise 5

Create Your Own Data Frame:

Objective: Create a data frame in R with 30 rows containing a mix of data types: continuous, discrete, nominal, and ordinal.

5.0.1 Instructions

  1. Open RStudio or the R console.

  2. Create a vector for each column in your data frame:

    • Date: 30 dates (can be sequential or random within a month/year)
    • Continuous: numeric values that can take decimal values (e.g., height, weight, temperature)
    • Discrete: numeric values that can only take whole numbers (e.g., number of items, number of vehicles)
    • Nominal: categorical values with no order (e.g., color, gender, city)
    • Ordinal: categorical values with a defined order (e.g., Low, Medium, High; Beginner, Intermediate, Expert)
  3. Combine all vectors into a data frame called my_data.

  4. Check your data frame using head() or View() to ensure it has 30 rows and the columns are correct.

  5. Optional tasks:

    • Summarize each column using summary()
    • Count the frequency of each category for Nominal and Ordinal columns using table()

5.0.2 Hints

  • Use seq.Date() or as.Date() to generate the Date column.
  • Use runif() or rnorm() for continuous numeric data.
  • Use sample() for discrete, nominal, and ordinal data.
  • Ensure the ordinal vector is created with factor(..., levels = c("Low","Medium","High"), ordered = TRUE) (or similar). ## Create each column
## Date: 30 consecutive dates in October 2025
Date <- seq.Date(from = as.Date("2025-10-01"), 
                 by = "day", 
                 length.out = 30)

## Continuous: for example body temperature data (in °C), use decimals
Continuous <- round(runif(30, min = 35.5, max = 37.5), 1)

## Discrete: e.g. number of items sold (whole number)
Discrete <- sample(1:50, 30, replace = TRUE)

## Nominal: e.g. cutomer's city of origin (no order)
Nominal <- sample(c("Jakarta", "Bandung", "Surabaya", "Medan", "Bali"),
                  30, replace = TRUE)

## Ordinal: e.g. satisfaction level (there is a sequence)
Ordinal <- factor(
  sample(c("Low", "Medium", "High"), 30, replace = TRUE),
  levels = c("Low", "Medium", "High"),
  ordered = TRUE
)

5.1 Combine all into a data frame

my_data <- data.frame(Date, Continuous, Discrete, Nominal, Ordinal)

5.2 Check the data contents

head(my_data)   # display the first 6 rows
View(my_data)   # open in Rstudio window (optional)

5.3 (Optional) Data Summary

summary(my_data)
##       Date              Continuous       Discrete      Nominal         
##  Min.   :2025-10-01   Min.   :35.50   Min.   : 6.0   Length:30         
##  1st Qu.:2025-10-08   1st Qu.:35.85   1st Qu.:16.0   Class :character  
##  Median :2025-10-15   Median :36.45   Median :24.5   Mode  :character  
##  Mean   :2025-10-15   Mean   :36.37   Mean   :25.0                     
##  3rd Qu.:2025-10-22   3rd Qu.:36.77   3rd Qu.:35.5                     
##  Max.   :2025-10-30   Max.   :37.30   Max.   :45.0                     
##    Ordinal  
##  Low   : 8  
##  Medium:10  
##  High  :12  
##             
##             
## 

5.4 Calculate frequency categories

cat("\n Nominal Frequency (City) \n")
## 
##  Nominal Frequency (City)
print(table(my_data$Nominal))
## 
##     Bali  Bandung  Jakarta    Medan Surabaya 
##        4        8        1        5       12
cat("\n Ordinal Frequency (Level of Satisfaction) \n")
## 
##  Ordinal Frequency (Level of Satisfaction)
print(table(my_data$Ordinal))
## 
##    Low Medium   High 
##      8     10     12
LS0tDQp0aXRsZTogIkRhdGEgRXhwbG9yYXRpb24iICAgICAgICMgTWFpbiB0aXRsZSBvZiB0aGUgZG9jdW1lbnQNCnN1YnRpdGxlOiAiRXhlcmNpc2VzIH4gV2VlayAyIiAgIyBTdWJ0aXRsZSBvciB0b3BpYyBmb3Igd2VlayAyDQphdXRob3I6DQotICJNLkZpdHJhaCBBaWRpbCBIYXJhaGFwIg0KLSAiUGFza2FsaXMgRmFyZWxuYXRhIFphbWFzaSINCi0gIlppZGhhbiBBbGZhcmV6aSBBZmRoaSINCi0gIkhhbmFmaSBNYWxpayBSaWZhaSINCi0gIiBEZW4gWXVhbiBGcmFzc2VrYSIjIFJlcGxhY2Ugd2l0aCB5b3VyIGZ1bGwgbmFtZQ0KZGF0ZTogICJgciBmb3JtYXQoU3lzLkRhdGUoKSwgJyVCICVkLCAlWScpYCIgIyBBdXRvIGRpc3BsYXlzIHRoZSBjdXJyZW50IGRhdGUNCm91dHB1dDogICAgICAgICAgICAgICAgICAgICAgICAgIyBPdXRwdXQgc2VjdGlvbiBkZWZpbmVzIHRoZSBmb3JtYXQgYW5kIGxheW91dCANCiAgcm1kZm9ybWF0czo6cmVhZHRoZWRvd246ICAgICAgIyBodHRwczovL2dpdGh1Yi5jb20vanViYS9ybWRmb3JtYXRzDQogICAgc2VsZl9jb250YWluZWQ6IHRydWUgICAgICAgICMgRW1iZWRzIGFsbCByZXNvdXJjZXMgKENTUywgSlMsIGltYWdlcykgDQogICAgdGh1bWJuYWlsczogdHJ1ZSAgICAgICAgICAgICMgRGlzcGxheXMgaW1hZ2UgdGh1bWJuYWlscyBpbiB0aGUgZG9jDQogICAgbGlnaHRib3g6IHRydWUgICAgICAgICAgICAgICMgRW5hYmxlcyBjbGljayB0byBlbmxhcmdlIGltYWdlcw0KICAgIGdhbGxlcnk6IHRydWUgICAgICAgICAgICAgICAjIEdyb3VwcyBpbWFnZXMgaW50byBhbiBpbnRlcmFjdGl2ZSBnYWxsZXJ5DQogICAgbnVtYmVyX3NlY3Rpb25zOiB0cnVlICAgICAgICMgQXV0b21hdGljYWxseSBudW1iZXJzIGFsbCBzZWN0aW9ucw0KICAgIGxpYl9kaXI6IGxpYnMgICAgICAgICAgICAgICAjIERpcmVjdG9yeSB3aGVyZSBKYXZhU2NyaXB0L0NTUyBsaWJyYXJpZXMNCiAgICBkZl9wcmludDogInBhZ2VkIiAgICAgICAgICAgIyBEaXNwbGF5cyBkYXRhIGZyYW1lcyBhcyBpbnRlcmFjdGl2ZSBwYWdlZCANCiAgICBjb2RlX2ZvbGRpbmc6ICJzaG93IiAgICAgICAgIyBBbGxvd3MgZm9sZGluZy91bmZvbGRpbmcgUiBjb2RlIGJsb2NrcyANCiAgICBjb2RlX2Rvd25sb2FkOiB5ZXMgICAgICAgICAgIyBBZGRzIGEgYnV0dG9uIHRvIGRvd25sb2FkIGFsbCBSIGNvZGUNCi0tLQ0KDQoNCjxpbWcgaWQ9IkZvdG8iIHNyYz0iQzpcVXNlcnNcU3JpIEJ1ZGl5YW50aVxEb3dubG9hZHNcV2hhdHNBcHAgSW1hZ2UgMjAyNS0xMC0xMCBhdCAxOC40Mi4xMi5qcGVnIiBhbHQ9IkxvZ28iIHN0eWxlPSJ3aWR0aDoyMDBweDsgZGlzcGxheTogYmxvY2s7IG1hcmdpbjogYXV0bzsiPg0KDQotLS0NCg0KIyBFeGVyY2lzZSAxDQoNClRoZSBmb2xsb3dpbmcgdGFibGUgc2hvd3Mgc2FtcGxlIGluZm9ybWF0aW9uIGZvciB0aHJlZSBzdHVkZW50cy4gRWFjaCBvYnNlcnZhdGlvbiByZXByZXNlbnRzIGEgc2luZ2xlIHN0dWRlbnQgYW5kIGluY2x1ZGVzIGRldGFpbHMgc3VjaCBhcyB0aGVpciB1bmlxdWUgc3R1ZGVudCBJRCwgbmFtZSwgYWdlLCB0b3RhbCBjcmVkaXRzIGNvbXBsZXRlZCwgbWFqb3IgZmllbGQgb2Ygc3R1ZHksIGFuZCB5ZWFyIGxldmVsLiAgDQoNClRoaXMgZGF0YXNldCBkZW1vbnN0cmF0ZXMgYSBtaXh0dXJlIG9mIHZhcmlhYmxlIHR5cGVzOiAgDQoNCi0gKipOb21pbmFsOioqIFN0dWRlbnRJRCwgTmFtZSwgTWFqb3IgIA0KLSAqKk51bWVyaWM6KiogQWdlIChjb250aW51b3VzKSwgQ3JlZGl0c0NvbXBsZXRlZCAoZGlzY3JldGUpICANCi0gKipPcmRpbmFsOioqIFllYXJMZXZlbCAoRnJlc2htYW4g4oaSIFNlbmlvcikgIA0KDQp8IFN0dWRlbnRJRCB8IE5hbWUgICB8IEFnZSB8IENyZWRpdHNDb21wbGV0ZWQgfCBNYWpvciAgICAgICAgICAgIHwgWWVhckxldmVsIHwNCnwtLS0tLS0tLS0tLXwtLS0tLS0tLXwtLS0tLXwtLS0tLS0tLS0tLS0tLS0tLXwtLS0tLS0tLS0tLS0tLS0tLXwtLS0tLS0tLS0tLXwNCnwgUzAwMSAgICAgIHwgQWxpY2UgIHwgMjAgIHwgNDUgICAgICAgICAgICAgIHwgRGF0YSBTYWlucyAgICAgIHwgU29waG9tb3JlIHwNCnwgUzAwMiAgICAgIHwgQnVkaSAgIHwgMjEgIHwgNjAgICAgICAgICAgICAgIHwgTWF0aGVtYXRpY3MgICAgIHwgSnVuaW9yICAgIHwNCnwgUzAwMyAgICAgIHwgQ2l0cmEgIHwgMTkgIHwgMzAgICAgICAgICAgICAgIHwgU3RhdGlzdGljcyAgICAgIHwgRnJlc2htYW4gIHwNCg0KYGBge3J9DQojIDEuIENyZWF0ZSB2ZWN0b3JzIGZvciBlYWNoIHZhcmlhYmxlDQpTdHVkZW50SUQgPC0gYygiUzAwMSIsICJTMDAyIiwgIlMwMDMiKSAgICAgICAjIE5vbWluYWwgLyBJRA0KTmFtZSA8LSBjKCJBbGljZSIsICJCdWRpIiwgIkNpdHJhIikgICAgICAgICAgIyBOb21pbmFsIC8gTmFtZQ0KQWdlIDwtIGMoMjAsIDIxLCAxOSkgICAgICAgICAgICAgICAgICAgICAgICAgIyBOdW1lcmljIC8gQ29udGludW91cw0KQ3JlZGl0c0NvbXBsZXRlZCA8LSBjKDQ1LCA2MCwgMzApICAgICAgICAgICAgIyBOdW1lcmljIC8gRGlzY3JldGUNCg0KIyBOb21pbmFsDQpNYWpvciA8LSBjKCJEYXRhIFNhaW5zIiwgIk1hdGhlbWF0aWNzIiwgIlN0YXRpc3RpY3MiKSAgDQoNCiMgT3JkaW5hbA0KWWVhckxldmVsIDwtIGZhY3RvcihjKCJTb3Bob21vcmUiLCAiSnVuaW9yIiwgIkZyZXNobWFuIiksDQogICAgICAgICAgICAgICAgICAgIGxldmVscyA9IGMoIkZyZXNobWFuIiwiU29waG9tb3JlIiwiSnVuaW9yIiwiU2VuaW9yIiksDQogICAgICAgICAgICAgICAgICAgIG9yZGVyZWQgPSBUUlVFKSAgICAgICAgICANCg0KIyAyLiBDb21iaW5lIGFsbCB2ZWN0b3JzIGludG8gYSBkYXRhIGZyYW1lDQpzdHVkZW50cyA8LSBkYXRhLmZyYW1lKA0KICBTdHVkZW50SUQsIE5hbWUsIEFnZSwgQ3JlZGl0c0NvbXBsZXRlZCwgTWFqb3IsIFllYXJMZXZlbCwNCiAgc3RyaW5nc0FzRmFjdG9ycyA9IEZBTFNFDQopDQoNCiMgMy4gRGlzcGxheSB0aGUgZGF0YSBmcmFtZQ0KcHJpbnQoc3R1ZGVudHMpDQpgYGANCg0KDQojIEV4ZXJjaXNlIDINCg0KKipJZGVudGlmeSBEYXRhIFR5cGVzOioqIERldGVybWluZSB0aGUgdHlwZSBvZiBkYXRhIGZvciBlYWNoIG9mIHRoZSBmb2xsb3dpbmcgdmFyaWFibGVzOg0KDQpgYGB7cn0NCiMgSW5zdGFsbCBrbml0ciBwYWNrYWdlIGlmIG5vdCBhbHJlYWR5IGluc3RhbGxlZA0KIyBpbnN0YWxsLnBhY2thZ2VzKCJrbml0ciIpDQpsaWJyYXJ5KGtuaXRyKQ0KDQojIENyZWF0ZSBhIGRhdGEgZnJhbWUgZm9yIERhdGEgVHlwZXMNCnZhcmlhYmxlc19pbmZvIDwtIGRhdGEuZnJhbWUoDQogIE5vID0gMTo1LA0KICBWYXJpYWJsZSA9IGMoDQogICAgIk51bWJlciBvZiB2ZWhpY2xlcyBwYXNzaW5nIHRocm91Z2ggdGhlIHRvbGwgcm9hZCBlYWNoIGRheSIsDQogICAgIlN0dWRlbnQgaGVpZ2h0IGluIGNtIiwNCiAgICAiRW1wbG95ZWUgZ2VuZGVyIChNYWxlIC8gRmVtYWxlKSIsDQogICAgIkN1c3RvbWVyIHNhdGlzZmFjdGlvbiBsZXZlbDogTG93LCBNZWRpdW0sIEhpZ2giLA0KICAgICJSZXNwb25kZW50J3MgZmF2b3JpdGUgY29sb3I6IFJlZCwgQmx1ZSwgR3JlZW4iDQogICksDQogIERhdGFUeXBlID0gYygNCiAgICAiUXVhbnRpdGF0aXZlIiwNCiAgICAiUXVhbnRpdGF0aXZlIiwNCiAgICAiUXVhbnRpdGF0aXZlIiwNCiAgICAiUXVhbGl0YXRpdmUiLA0KICAgICJRdWFsaXRhdGl2ZSINCiAgKSwNCiAgU3VidHlwZSA9IGMoDQogICAgIkRpc2tyZXRlIiwNCiAgICAiQ29udGludW91cyIsDQogICAgIk5vbWluYWwiLA0KICAgICJPcmRpbmFsIiwNCiAgICAiTm9taW5hbCINCiAgKSwNCiAgc3RyaW5nc0FzRmFjdG9ycyA9IEZBTFNFDQopDQoNCiMgRGlzcGxheSB0aGUgZGF0YSBmcmFtZSBhcyBhIG5lYXQgdGFibGUNCmthYmxlKHZhcmlhYmxlc19pbmZvLCANCiAgICAgIGNhcHRpb24gPSAiVGFibGUgb2YgVmFyaWFibGVzIGFuZCBEYXRhIFR5cGVzIikNCmBgYA0KLS0tDQoNCiMgRXhlcmNpc2UgMw0KDQoqKkNsYXNzaWZ5IERhdGEgU291cmNlczoqKiBEZXRlcm1pbmUgd2hldGhlciB0aGUgZm9sbG93aW5nIGRhdGEgY29tZXMgZnJvbSAqKmludGVybmFsKiogb3IgKipleHRlcm5hbCBzb3VyY2VzKiosIGFuZCB3aGV0aGVyIGl0IGlzICoqc3RydWN0dXJlZCoqIG9yICoqdW5zdHJ1Y3R1cmVkKio6DQoNCmBgYHtyfQ0KIyBJbnN0YWxsIERUIHBhY2thZ2UgaWYgbm90IGFscmVhZHkgaW5zdGFsbGVkDQojIGluc3RhbGwucGFja2FnZXMoIkRUIikNCmxpYnJhcnkoRFQpDQoNCiMgQ3JlYXRlIGEgZGF0YSBmcmFtZSBmb3IgZGF0YSBzb3VyY2VzIA0KZGF0YV9zb3VyY2VzIDwtIGRhdGEuZnJhbWUoDQogIE5vID0gMTo0LA0KICBEYXRhU291cmNlID0gYygNCiAgICAiRGFpbHkgc2FsZXMgdHJhbnNhY3Rpb24gZGF0YSBvZiB0aGUgY29tcGFueSIsDQogICAgIldlYXRoZXIgcmVwb3J0cyBmcm9tIEJNS0ciLA0KICAgICJQcm9kdWN0IHJldmlld3Mgb24gc29jaWFsIG1lZGlhIiwNCiAgICAiV2FyZWhvdXNlIGludmVudG9yeSByZXBvcnRzIg0KICApLA0KICBJbnRlcm5hbF9FeHRlcm5hbCA9IGMoDQogICAgIkludGVybmFsIiwNCiAgICAiRWtzdGVybmFsIiwNCiAgICAiRWtzdGVybmFsIiwNCiAgICAiSW50ZXJuYWwiDQogICksDQogIFN0cnVjdHVyZWRfVW5zdHJ1Y3R1cmVkID0gYygNCiAgICAiU3RydWN0dXJlZCIsDQogICAgIlN0cnVjdHVyZWQiLA0KICAgICJVbnN0cnVjdHVyZWQiLA0KICAgICJTdHJ1Y3R1cmVkIg0KICApLA0KICBzdHJpbmdzQXNGYWN0b3JzID0gRkFMU0UNCikNCg0KIyBEaXNwbGF5IHRoZSBkYXRhIGZyYW1lIGFzIGEgbmVhdCB0YWJsZQ0KZGF0YXRhYmxlKGRhdGFfc291cmNlcywgDQogICAgICAgICAgY2FwdGlvbiA9ICJUYWJsZSBvZiBEYXRhIFNvdXJjZXMiLA0KICAgICAgICAgIHJvd25hbWVzID0gRkFMU0UpICMgaGlkZXMgdGhlIGluZGV4IGNvbHVtbg0KYGBgDQoNCi0tLQ0KDQojIEV4ZXJjaXNlIDQNCg0KKipEYXRhc2V0IFN0cnVjdHVyZToqKiBDb25zaWRlciB0aGUgZm9sbG93aW5nIHRyYW5zYWN0aW9uIHRhYmxlOg0KDQp8IERhdGUgICAgICAgfCBRdHkgfCBQcmljZSB8IFByb2R1Y3QgIHwgQ3VzdG9tZXJUaWVyIHwNCnwtLS0tLS0tLS0tLS18LS0tLS18LS0tLS0tLXwtLS0tLS0tLS0tfC0tLS0tLS0tLS0tLS0tfA0KfCAyMDI1LTEwLTAxIHwgMiAgIHwgMTAwMCAgfCBMYXB0b3AgICB8IEhpZ2ggICAgICAgICB8DQp8IDIwMjUtMTAtMDEgfCA1ICAgfCAyMCAgICB8IE1vdXNlICAgIHwgTWVkaXVtICAgICAgIHwNCnwgMjAyNS0xMC0wMiB8IDEgICB8IDEwMDAgIHwgTGFwdG9wICAgfCBMb3cgICAgICAgICAgfA0KfCAyMDI1LTEwLTAyIHwgMyAgIHwgMzAgICAgfCBLZXlib2FyZCB8IE1lZGl1bSAgICAgICB8DQp8IDIwMjUtMTAtMDMgfCA0ICAgfCA1MCAgICB8IE1vdXNlICAgIHwgTWVkaXVtICAgICAgIHwNCnwgMjAyNS0xMC0wMyB8IDIgICB8IDEwMDAgIHwgTGFwdG9wICAgfCBIaWdoICAgICAgICAgfA0KfCAyMDI1LTEwLTA0IHwgNiAgIHwgMjUgICAgfCBLZXlib2FyZCB8IExvdyAgICAgICAgICB8DQp8IDIwMjUtMTAtMDQgfCAxICAgfCAxMDAwICB8IExhcHRvcCAgIHwgSGlnaCAgICAgICAgIHwNCnwgMjAyNS0xMC0wNSB8IDMgICB8IDQwICAgIHwgTW91c2UgICAgfCBMb3cgICAgICAgICAgfA0KfCAyMDI1LTEwLTA1IHwgNSAgIHwgMTAgICAgfCBLZXlib2FyZCB8IE1lZGl1bSAgICAgICB8DQoNCg0KKipZb3VyIEFzc2lnbm1lbnQgSW5zdHJ1Y3Rpb25zOioqIENyZWF0aW5nIGEgVHJhbnNhY3Rpb25zIFRhYmxlIGFib3ZlIGluIFINCg0KMS4gKipDcmVhdGUgYSBkYXRhIGZyYW1lKiogaW4gUiBjYWxsZWQgYHRyYW5zYWN0aW9uc2AgY29udGFpbmluZyB0aGUgZGF0YSBhYm92ZS4NCg0KMi4gSWRlbnRpZnkgd2hpY2ggdmFyaWFibGVzIGFyZSBudW1lcmljIGFuZCB3aGljaCBhcmUgY2F0ZWdvcmljYWwNCg0KMy4gKipDYWxjdWxhdGUgdG90YWwgcmV2ZW51ZSoqIGZvciBlYWNoIHRyYW5zYWN0aW9uIGJ5IG11bHRpcGx5aW5nIGBRdHkgw5cgUHJpY2VgIGFuZCBhZGQgaXQgYXMgYSBuZXcgY29sdW1uIGBUb3RhbGAuDQoNCjQuICoqQ29tcHV0ZSBzdW1tYXJ5IHN0YXRpc3RpY3MqKjoNCiAgIC0gVG90YWwgcXVhbnRpdHkgc29sZCBmb3IgZWFjaCBwcm9kdWN0DQogICAtIFRvdGFsIHJldmVudWUgcGVyIHByb2R1Y3QNCiAgIC0gQXZlcmFnZSBwcmljZSBwZXIgcHJvZHVjdA0KDQo1LiAqKlZpc3VhbGl6ZSB0aGUgZGF0YSoqOg0KICAgLSBDcmVhdGUgYSAqKmJhcnBsb3QqKiBzaG93aW5nIHRvdGFsIHF1YW50aXR5IHNvbGQgcGVyIHByb2R1Y3QuDQogICAtIENyZWF0ZSBhICoqcGllIGNoYXJ0Kiogc2hvd2luZyB0aGUgcHJvcG9ydGlvbiBvZiB0b3RhbCByZXZlbnVlIHBlciBjdXN0b21lciB0aWVyLg0KDQo2LiAqKk9wdGlvbmFsIENoYWxsZW5nZSoqOg0KICAgLSBGaW5kIHdoaWNoICoqZGF0ZSoqIGhhZCB0aGUgaGlnaGVzdCB0b3RhbCByZXZlbnVlLg0KICAgLSBDcmVhdGUgYSAqKnN0YWNrZWQgYmFyIGNoYXJ0Kiogc2hvd2luZyBxdWFudGl0eSBzb2xkIHBlciBwcm9kdWN0IGJ5IGN1c3RvbWVyIHRpZXIuDQoNCioqSGludHM6KiogVXNlIGBkYXRhLmZyYW1lKClgLCBgYWdncmVnYXRlKClgLCBgYmFycGxvdCgpYCwgYHBpZSgpYCwgYW5kIGJhc2ljIGFyaXRobWV0aWMgb3BlcmF0aW9ucyBpbiBSLg0KDQojIyBDcmVhdGUgRGF0YSBGcmFtZQ0KYGBge1J9DQp0cmFuc2FjdGlvbnMgPC0gZGF0YS5mcmFtZSgNCiAgRGF0ZSA9IGFzLkRhdGUoYyAoIjIwMjUtMTAtMDEiLCAiMjAyNS0xMC0wMSIsICIyMDI1LTEwLTAyIiwgIjIwMjUtMTAtMDIiLCANCiAgICAgICAgICAgICAgICAiMjAyNS0xMC0wMyIsICIyMDI1LTEwLTAzIiwgIjIwMjUtMTAtMDQiLCAiMjAyNS0xMC0wNCIsDQogICAgICAgICAgICAgICAgIjIwMjUtMTAtMDUiLCAiMjAyNS0xMC0wNSIpKSwNCiAgUXR5ID0gYygyLCA1LCAxLCAzLCA0LCAyLCA2LCAxLCAzLCA1KSwNCiAgUHJpY2UgPSBjKDEwMDAsIDIwLCAxMDAwLCAzMCwgNTAsIDEwMDAsIDI1LCAxMDAwLCA0MCwgMTApLA0KICBQcm9kdWN0ID0gYygiTGFwdG9wIiwgIk1vdXNlIiwgIkxhcHRvcCIsICJLZXlib2FyZCIsICJNb3VzZSIsDQogICAgICAgICAgICAgICJMYXB0b3AiLCAiS2V5Ym9hcmQiLCAiTGFwdG9wIiwgIk1vdXNlIiwgIktleWJvYXJkIiksDQogIEN1c3RvbWVyVGllciA9IGMoIkhpZ2giLCAiTWVkaXVtIiwgIkxvdyIsICJNZWRpdW0iLCAiTWVkaXVtIiwNCiAgICAgICAgICAgICAgICAgICAiSGlnaCIsICJMb3ciLCAiSGlnaCIsICJMb3ciLCAiTWVkaXVtIiksDQogIHN0cmluZ3NBc0ZhY3RvcnMgPSBGQUxTRSkNCg0KIyBWaWV3IHRoZSBkYXRhc2V0IGNvbnRlbnRzDQprYWJsZSh0cmFuc2FjdGlvbnMsDQogICAgICBjYXB0aW9uID0gIlRyYW5zYWN0aW9ucyBEYXRhIGJ5IEN1c3RvbWVyIFRpZXIiKQ0KYGBgDQoNCiMjIElkZW50aWZ5IGRhdGEgdHlwZXMNCmBgYHtSfQ0Kc3RyKHRyYW5zYWN0aW9ucykgICMgTG9vayBhdCB0aGUgKG51bWVyaWMgdnMgY2F0ZWdvcmljYWwpDQpgYGANCg0KIyMgQWRkIGEgVG90YWwgY29sdW1uDQpgYGB7Un0NCnRyYW5zYWN0aW9ucyRUb3RhbCA8LSB0cmFuc2FjdGlvbnMkUXR5ICogdHJhbnNhY3Rpb25zJFByaWNlDQpgYGANCg0KIyMgVmlldyByZXN1bHRzDQpgYGB7Un0NCnByaW50KHRyYW5zYWN0aW9ucykNCmBgYA0KDQojIyBTdW1tYXJ5IFN0YXRpc3RpY3MNCmBgYHtSfQ0KDQojIyMgVG90YWwgcXVhbnRpdHkgc29sZCBwZXIgcHJvZHVjdA0KdG90YWxfcXR5IDwtIGFnZ3JlZ2F0ZShRdHkgfiBQcm9kdWN0LCBkYXRhID0gdHJhbnNhY3Rpb25zLCBzdW0pDQoNCiMjIyBUb3RhbCByZXZlbnVlIHBlciBwcm9kdWN0DQp0b3RhbF9yZXZlbnVlIDwtIGFnZ3JlZ2F0ZShUb3RhbCB+IFByb2R1Y3QsIGRhdGEgPSB0cmFuc2FjdGlvbnMsIHN1bSkNCg0KIyMjIEF2ZXJhZ2UgcHJpY2UgcGVyIHByb2R1Y3QNCmF2Z19wcmljZSA8LSBhZ2dyZWdhdGUoUHJpY2UgfiBQcm9kdWN0LCBkYXRhID0gdHJhbnNhY3Rpb25zLCBtZWFuKQ0KYGBgDQoNCiMjIFNob3cgc3VtbWFyeSByZXN1bHRzDQpgYGB7Un0NCmNhdCgiXG4gVG90YWwgUXVhbnRpdHkgcGVyIFByb2R1Y3QgXG4iKQ0KcHJpbnQodG90YWxfcXR5KQ0KY2F0KCJcbiBUb3RhbCBSZXZlbnVlIHBlciBQcm9kdWN0IFxuIikNCnByaW50KHRvdGFsX3JldmVudWUpDQpjYXQoIlxuIEF2ZXJhZ2UgUHJpY2UgcGVyIFByb2R1Y3QgXG4iKQ0KcHJpbnQoYXZnX3ByaWNlKQ0KYGBgDQoNCiMjIFZpc3VhbGl6YXRpb24NCmBgYHtSfQ0KDQojIyMgKGEpIEJhcnBsb3QgLSB0b3RhbCBxdWFudGl0eSBzb2xkIHBlciBwcm9kdWN0DQpiYXJwbG90KA0KICB0b3RhbF9xdHkkUXR5LA0KICBuYW1lcy5hcmcgPSB0b3RhbF9xdHkkUHJvZHVjdCwNCiAgbWFpbiA9ICJUb3RhbCBRdWFudGl0eSBTb2xkIHBlciBQcm9kdWN0IiwNCiAgeGxhYiA9ICJQcm9kdWN0IiwNCiAgeWxhYiA9ICJUb3RhbCBRdWFudGl0eSIsDQogIGNvbCA9IGMoInNreWJsdWUiLCAibGlnaHRncmVlbiIsICJvcmFuZ2UiKQ0KKQ0KDQojIyMgKGIpIFBpZSBjaGFydCAtIHByb3BvcnRpb24gb2YgdG90YWwgcmV2ZW51ZSBwZXIgQ3VzdG9tZXIgVGllcg0KcmV2ZW51ZV90aWVyIDwtIGFnZ3JlZ2F0ZShUb3RhbCB+IEN1c3RvbWVyVGllciwgZGF0YSA9IHRyYW5zYWN0aW9ucywgc3VtKQ0KcGllKA0KICByZXZlbnVlX3RpZXIkVG90YWwsDQogIGxhYmVscyA9IHBhc3RlKHJldmVudWVfdGllciRDdXN0b21lclRpZXIsICItIiwgcmV2ZW51ZV90aWVyJFRvdGFsKSwNCiAgbWFpbiA9ICJQcm9wb3J0aW9uIG9mIFRvdGFsIFJldmVudWUgcGVyIEN1c3RvbWVyIFRpZXIiLA0KICBjb2wgPSBjKCJnb2xkIiwgImxpZ2h0Ymx1ZSIsICJ0b21hdG8iKQ0KKQ0KYGBgDQoNCiMjIE9wdGlvbmFsIENoYWxsZW5nZQ0KYGBge3J9DQoNCiMjIyAoYSkgRGF0ZSB3aXRoIGhpZ2hlc3QgdG90YWwgcmV2ZW51ZQ0KZGF0ZV9yZXZlbnVlIDwtIGFnZ3JlZ2F0ZShUb3RhbCB+IERhdGUsIGRhdGEgPSB0cmFuc2FjdGlvbnMsIHN1bSkNCm1heF9yZXZfZGF0ZSA8LSBkYXRlX3JldmVudWVbd2hpY2gubWF4KGRhdGVfcmV2ZW51ZSRUb3RhbCksIF0NCmNhdCgiXG5EYXRlIHdpdGggaGlnaGVzdCB0b3RhbCByZXZlbnVlOlxuIikNCnByaW50KG1heF9yZXZfZGF0ZSkNCg0KIyMjIChiKSBTdGFja2VkIGJhciBjaGFydDogcXVhbnRpdHkgc29sZCBwZXIgcHJvZHVjdCBieSBjdXN0b21lciB0aWVyDQpxdHlfc3RhY2sgPC0gYWdncmVnYXRlKFF0eSB+IFByb2R1Y3QgKyBDdXN0b21lclRpZXIsIGRhdGEgPSB0cmFuc2FjdGlvbnMsIHN1bSkNCnF0eV9tYXRyaXggPC0geHRhYnMoUXR5IH4gQ3VzdG9tZXJUaWVyICsgUHJvZHVjdCwgZGF0YSA9IHF0eV9zdGFjaykNCmJhcnBsb3QoDQogIHF0eV9tYXRyaXgsDQogIGJlc2lkZSA9IEZBTFNFLA0KICBtYWluID0gIlF1YW50aXR5IFNvbGQgcGVyIFByb2R1Y3QgYnkgQ3VzdG9tZXIgVGllciIsDQogIHhsYWIgPSAiUHJvZHVjdCIsDQogIHlsYWIgPSAiUXVhbnRpdHkgU29sZCIsDQogIGNvbCA9IGMoImxpZ2h0Ymx1ZSIsICJnb2xkIiwgInRvbWF0byIpDQopDQpsZWdlbmQoInRvcHJpZ2h0IiwgbGVnZW5kID0gcm93bmFtZXMocXR5X21hdHJpeCksDQogICAgICAgZmlsbCA9IGMoImxpZ2h0Ymx1ZSIsICJnb2xkIiwgInRvbWF0byIpLCB0aXRsZSA9ICJDdXN0b21lciBUaWVyIikNCmBgYA0KDQoNCiMgRXhlcmNpc2UgNQ0KDQoqKkNyZWF0ZSBZb3VyIE93biBEYXRhIEZyYW1lOioqDQoNCioqT2JqZWN0aXZlOioqIENyZWF0ZSBhIGRhdGEgZnJhbWUgaW4gUiB3aXRoICoqMzAgcm93cyoqIGNvbnRhaW5pbmcgYSBtaXggb2YgZGF0YSB0eXBlczogY29udGludW91cywgZGlzY3JldGUsIG5vbWluYWwsIGFuZCBvcmRpbmFsLiAgDQoNCiMjIyBJbnN0cnVjdGlvbnMNCg0KMS4gKipPcGVuIFJTdHVkaW8qKiBvciB0aGUgUiBjb25zb2xlLiAgDQoNCjIuICoqQ3JlYXRlIGEgdmVjdG9yIGZvciBlYWNoIGNvbHVtbioqIGluIHlvdXIgZGF0YSBmcmFtZTogIA0KDQogICAtICoqRGF0ZSoqOiAzMCBkYXRlcyAoY2FuIGJlIHNlcXVlbnRpYWwgb3IgcmFuZG9tIHdpdGhpbiBhIG1vbnRoL3llYXIpICANCiAgIC0gKipDb250aW51b3VzKio6IG51bWVyaWMgdmFsdWVzIHRoYXQgY2FuIHRha2UgZGVjaW1hbCB2YWx1ZXMgKGUuZy4sIGhlaWdodCwgd2VpZ2h0LCB0ZW1wZXJhdHVyZSkgIA0KICAgLSAqKkRpc2NyZXRlKio6IG51bWVyaWMgdmFsdWVzIHRoYXQgY2FuIG9ubHkgdGFrZSB3aG9sZSBudW1iZXJzIChlLmcuLCBudW1iZXIgb2YgaXRlbXMsIG51bWJlciBvZiB2ZWhpY2xlcykgIA0KICAgLSAqKk5vbWluYWwqKjogY2F0ZWdvcmljYWwgdmFsdWVzIHdpdGggKipubyBvcmRlcioqIChlLmcuLCBjb2xvciwgZ2VuZGVyLCBjaXR5KSAgDQogICAtICoqT3JkaW5hbCoqOiBjYXRlZ29yaWNhbCB2YWx1ZXMgd2l0aCBhICoqZGVmaW5lZCBvcmRlcioqIChlLmcuLCBMb3csIE1lZGl1bSwgSGlnaDsgQmVnaW5uZXIsIEludGVybWVkaWF0ZSwgRXhwZXJ0KSAgDQoNCjMuICoqQ29tYmluZSBhbGwgdmVjdG9ycyBpbnRvIGEgZGF0YSBmcmFtZSoqIGNhbGxlZCBgbXlfZGF0YWAuICANCg0KNC4gKipDaGVjayB5b3VyIGRhdGEgZnJhbWUqKiB1c2luZyBgaGVhZCgpYCBvciBgVmlldygpYCB0byBlbnN1cmUgaXQgaGFzICoqMzAgcm93cyoqIGFuZCB0aGUgY29sdW1ucyBhcmUgY29ycmVjdC4gIA0KDQo1LiAqKk9wdGlvbmFsIHRhc2tzKio6ICANCiAgIC0gU3VtbWFyaXplIGVhY2ggY29sdW1uIHVzaW5nIGBzdW1tYXJ5KClgICANCiAgIC0gQ291bnQgdGhlIGZyZXF1ZW5jeSBvZiBlYWNoIGNhdGVnb3J5IGZvciAqKk5vbWluYWwqKiBhbmQgKipPcmRpbmFsKiogY29sdW1ucyB1c2luZyBgdGFibGUoKWAgIA0KDQojIyMgSGludHMNCg0KLSBVc2UgYHNlcS5EYXRlKClgIG9yIGBhcy5EYXRlKClgIHRvIGdlbmVyYXRlIHRoZSBEYXRlIGNvbHVtbi4gIA0KLSBVc2UgYHJ1bmlmKClgIG9yIGBybm9ybSgpYCBmb3IgY29udGludW91cyBudW1lcmljIGRhdGEuICANCi0gVXNlIGBzYW1wbGUoKWAgZm9yIGRpc2NyZXRlLCBub21pbmFsLCBhbmQgb3JkaW5hbCBkYXRhLiAgDQotIEVuc3VyZSB0aGUgKipvcmRpbmFsIHZlY3RvcioqIGlzIGNyZWF0ZWQgd2l0aCBgZmFjdG9yKC4uLiwgbGV2ZWxzID0gYygiTG93IiwiTWVkaXVtIiwiSGlnaCIpLCBvcmRlcmVkID0gVFJVRSlgIChvciBzaW1pbGFyKS4NCiMjIENyZWF0ZSBlYWNoIGNvbHVtbg0KYGBge1J9DQojIyBEYXRlOiAzMCBjb25zZWN1dGl2ZSBkYXRlcyBpbiBPY3RvYmVyIDIwMjUNCkRhdGUgPC0gc2VxLkRhdGUoZnJvbSA9IGFzLkRhdGUoIjIwMjUtMTAtMDEiKSwgDQogICAgICAgICAgICAgICAgIGJ5ID0gImRheSIsIA0KICAgICAgICAgICAgICAgICBsZW5ndGgub3V0ID0gMzApDQoNCiMjIENvbnRpbnVvdXM6IGZvciBleGFtcGxlIGJvZHkgdGVtcGVyYXR1cmUgZGF0YSAoaW4gwrBDKSwgdXNlIGRlY2ltYWxzDQpDb250aW51b3VzIDwtIHJvdW5kKHJ1bmlmKDMwLCBtaW4gPSAzNS41LCBtYXggPSAzNy41KSwgMSkNCg0KIyMgRGlzY3JldGU6IGUuZy4gbnVtYmVyIG9mIGl0ZW1zIHNvbGQgKHdob2xlIG51bWJlcikNCkRpc2NyZXRlIDwtIHNhbXBsZSgxOjUwLCAzMCwgcmVwbGFjZSA9IFRSVUUpDQoNCiMjIE5vbWluYWw6IGUuZy4gY3V0b21lcidzIGNpdHkgb2Ygb3JpZ2luIChubyBvcmRlcikNCk5vbWluYWwgPC0gc2FtcGxlKGMoIkpha2FydGEiLCAiQmFuZHVuZyIsICJTdXJhYmF5YSIsICJNZWRhbiIsICJCYWxpIiksDQogICAgICAgICAgICAgICAgICAzMCwgcmVwbGFjZSA9IFRSVUUpDQoNCiMjIE9yZGluYWw6IGUuZy4gc2F0aXNmYWN0aW9uIGxldmVsICh0aGVyZSBpcyBhIHNlcXVlbmNlKQ0KT3JkaW5hbCA8LSBmYWN0b3IoDQogIHNhbXBsZShjKCJMb3ciLCAiTWVkaXVtIiwgIkhpZ2giKSwgMzAsIHJlcGxhY2UgPSBUUlVFKSwNCiAgbGV2ZWxzID0gYygiTG93IiwgIk1lZGl1bSIsICJIaWdoIiksDQogIG9yZGVyZWQgPSBUUlVFDQopDQpgYGANCg0KIyMgQ29tYmluZSBhbGwgaW50byBhIGRhdGEgZnJhbWUNCmBgYHtSfQ0KbXlfZGF0YSA8LSBkYXRhLmZyYW1lKERhdGUsIENvbnRpbnVvdXMsIERpc2NyZXRlLCBOb21pbmFsLCBPcmRpbmFsKQ0KYGBgDQoNCiMjIENoZWNrIHRoZSBkYXRhIGNvbnRlbnRzDQpgYGB7Un0NCmhlYWQobXlfZGF0YSkgICAjIGRpc3BsYXkgdGhlIGZpcnN0IDYgcm93cw0KVmlldyhteV9kYXRhKSAgICMgb3BlbiBpbiBSc3R1ZGlvIHdpbmRvdyAob3B0aW9uYWwpDQpgYGANCg0KIyMgKE9wdGlvbmFsKSBEYXRhIFN1bW1hcnkNCmBgYHtSfQ0Kc3VtbWFyeShteV9kYXRhKQ0KYGBgDQojIyBDYWxjdWxhdGUgZnJlcXVlbmN5IGNhdGVnb3JpZXMNCmBgYHtSfQ0KY2F0KCJcbiBOb21pbmFsIEZyZXF1ZW5jeSAoQ2l0eSkgXG4iKQ0KcHJpbnQodGFibGUobXlfZGF0YSROb21pbmFsKSkNCg0KY2F0KCJcbiBPcmRpbmFsIEZyZXF1ZW5jeSAoTGV2ZWwgb2YgU2F0aXNmYWN0aW9uKSBcbiIpDQpwcmludCh0YWJsZShteV9kYXRhJE9yZGluYWwpKQ0KYGBgDQoNCg0KDQoNCg0K