Data Exploration
Excercises ~ Week 2
1 Exercise 1
The following table shows sample information for three students. Each observation represents a single student and includes details such as their unique student ID, name, age, total credits completed, major field of study, and year level.
This dataset demonstrates a mixture of variable types:
- Nominal: StudentID, Name, Major
- Numeric: Age (continuous), CreditsCompleted
(discrete)
- Ordinal: YearLevel (Freshman → Senior)
StudentID | Name | Age | CreditsCompleted | Major | YearLevel |
---|---|---|---|---|---|
S001 | Alice | 20 | 45 | Data Sains | Sophomore |
S002 | Budi | 21 | 60 | Mathematics | Junior |
S003 | Citra | 19 | 30 | Statistics | Freshman |
# 1. Create vectors for each variable
StudentID <- c("S001", "S002", "S003") # Nominal / ID
Name <- c("Alice", "Budi", "Citra") # Nominal / Name
Age <- c(20, 21, 19) # Numeric / Continuous
CreditsCompleted <- c(45, 60, 30) # Numeric / Discrete
# Nominal
Major <- c("Data Sains", "Mathematics", "Statistics")
# Ordinal
YearLevel <- factor(c("Sophomore", "Junior", "Freshman"),
levels = c("Freshman","Sophomore","Junior","Senior"),
ordered = TRUE)
# 2. Combine all vectors into a data frame
students <- data.frame(
StudentID, Name, Age, CreditsCompleted, Major, YearLevel,
stringsAsFactors = FALSE
)
# 3. Display the data frame
print(students)
## StudentID Name Age CreditsCompleted Major YearLevel
## 1 S001 Alice 20 45 Data Sains Sophomore
## 2 S002 Budi 21 60 Mathematics Junior
## 3 S003 Citra 19 30 Statistics Freshman
2 Exercise 2
Identify Data Types: Determine the type of data for each of the following variables:
library(knitr)
# Create a data frame for Data Types
variables_info <- data.frame(
No = 1:5,
Variable = c(
"Number of vehicles passing through the toll road each day",
"Student height in cm",
"Employee gender (Male / Female)",
"Customer satisfaction level: Low, Medium, High",
"Respondent's favorite color: Red, Blue, Green"
),
DataType = c(
"Numeric",
"Numeric",
"Categorical",
"Categorical",
"Categorical"
),
Subtype = c(
"Discrete",
"Continuous",
"Nominal",
"Ordinal",
"Nominal"
),
stringsAsFactors = FALSE
)
# Display the data frame as a neat table
kable(variables_info,
caption = "Table of Variables and Data Types")
No | Variable | DataType | Subtype |
---|---|---|---|
1 | Number of vehicles passing through the toll road each day | Numeric | Discrete |
2 | Student height in cm | Numeric | Continuous |
3 | Employee gender (Male / Female) | Categorical | Nominal |
4 | Customer satisfaction level: Low, Medium, High | Categorical | Ordinal |
5 | Respondent’s favorite color: Red, Blue, Green | Categorical | Nominal |
3 Exercise 3
Classify Data Sources: Determine whether the following data comes from internal or external sources, and whether it is structured or unstructured:
# Install DT package if not already installed
# install.packages("DT")
library(DT)
# Create a data frame for data sources
data_sources <- data.frame(
No = 1:4,
DataSource = c(
"Daily sales transaction data of the company",
"Weather reports from BMKG",
"Product reviews on social media",
"Warehouse inventory reports"
),
Internal_External = c(
"Internal Source",
"External Source",
"External Source",
"Internal Source"
),
Structured_Unstructured = c(
"Structured",
"Structured",
"Unstructured",
"Structured"
),
stringsAsFactors = FALSE
)
# Display the data frame as a neat table
datatable(data_sources,
caption = "Table of Data Sources",
rownames = FALSE) # hides the index column
4 Exercise 4
Dataset Structure: Consider the following transaction table:
Date | Qty | Price | Product | CustomerTier |
---|---|---|---|---|
2025-10-01 | 2 | 1000 | Laptop | High |
2025-10-01 | 5 | 20 | Mouse | Medium |
2025-10-02 | 1 | 1000 | Laptop | Low |
2025-10-02 | 3 | 30 | Keyboard | Medium |
2025-10-03 | 4 | 50 | Mouse | Medium |
2025-10-03 | 2 | 1000 | Laptop | High |
2025-10-04 | 6 | 25 | Keyboard | Low |
2025-10-04 | 1 | 1000 | Laptop | High |
2025-10-05 | 3 | 40 | Mouse | Low |
2025-10-05 | 5 | 10 | Keyboard | Medium |
Your Assignment Instructions: Creating a Transactions Table above in R
Create a data frame in R called
transactions
containing the data above.Identify which variables are numeric and which are categorical
Calculate total revenue for each transaction by multiplying
Qty × Price
and add it as a new columnTotal
.Compute summary statistics:
- Total quantity sold for each product
- Total revenue per product
- Average price per product
Visualize the data:
- Create a barplot showing total quantity sold per product.
- Create a pie chart showing the proportion of total revenue per customer tier.
Optional Challenge:
- Find which date had the highest total revenue.
- Create a stacked bar chart showing quantity sold per product by customer tier.
Hints: Use data.frame()
,
aggregate()
, barplot()
, pie()
,
and basic arithmetic operations in R.
# Load Package
library(kableExtra)
library(DT)
library(htmltools)
# Create Data Frame Transactions
transactions <- data.frame(
No = 1:10,
Date = as.Date(c(
"2025-10-01", "2025-10-01", "2025-10-02", "2025-10-02",
"2025-10-03", "2025-10-03", "2025-10-04", "2025-10-04",
"2025-10-05", "2025-10-05"
)),
Quantity = c(2, 5, 1, 3, 4, 2, 6, 1, 3, 5),
Price = c(1000, 20, 1000, 30, 50, 1000, 25, 1000, 40, 10),
Product = factor(c(
"Laptop", "Mouse", "Laptop", "Keyboard", "Mouse",
"Laptop", "Keyboard", "Laptop", "Mouse", "Keyboard")),
CustomerTier = factor(c(
"High", "Medium", "Low", "Medium", "Medium",
"High", "Low", "High", "Low", "Medium"),
levels = c("Low","Medium","High"), ordered = TRUE),
stringsAsFactors = FALSE
)
transactions$Total <- transactions$Quantity * transactions$Price
str(transactions)
## 'data.frame': 10 obs. of 7 variables:
## $ No : int 1 2 3 4 5 6 7 8 9 10
## $ Date : Date, format: "2025-10-01" "2025-10-01" ...
## $ Quantity : num 2 5 1 3 4 2 6 1 3 5
## $ Price : num 1000 20 1000 30 50 1000 25 1000 40 10
## $ Product : Factor w/ 3 levels "Keyboard","Laptop",..: 2 3 2 1 3 2 1 2 3 1
## $ CustomerTier: Ord.factor w/ 3 levels "Low"<"Medium"<..: 3 2 1 2 2 3 1 3 1 2
## $ Total : num 2000 100 1000 90 200 2000 150 1000 120 50
datatable(
transactions,
caption = htmltools::tags$caption(style =
'caption-side: top;
text-align: center;
font-weight: bold;',
'**Table Transactions**'),
options = list(pageLength = 5, autoWidth = TRUE)
)
# Total quantity sold per product
total_qty <- aggregate(Quantity ~ Product, data = transactions, sum)
datatable(
total_qty,
caption = htmltools::tags$caption(style = 'caption-side:
top;
text-align: center;
font-weight:
bold;','Total Quantity'),
options = list(pageLength = 5, autoWidth = TRUE)
)
# Total revenue per product
total_revenue <- aggregate(Total ~ Product, data = transactions, sum)
datatable(
total_revenue,
caption = htmltools::tags$caption(style =
'caption-side: top;
text-align: center;
font-weight: bold;',
'Total Revenue'),
options = list(pageLength = 5, autoWidth = TRUE)
)
# Average price per product
avg_price <- aggregate(Price ~ Product, data = transactions, mean)
datatable(
avg_price,
caption = htmltools::tags$caption(style = 'caption-side: top; text-align: center; font-weight: bold;', 'Average Price'),
options = list(pageLength = 5, autoWidth = TRUE)
)
# Find the date with the highest total revenue
revenue_date <- aggregate(Total ~ Date, data = transactions, sum)
datatable(
revenue_date,
caption = htmltools::tags$caption(style = 'caption-side: top; text-align: center; font-weight: bold;', 'Highest Total Revenue'),
options = list(pageLength = 5, autoWidth = TRUE)
)
# Barplot total quantity sold per product
barplot(
total_qty$Quantity,
names.arg = total_qty$Product,
col = c("lightblue", "lightgreen", "lightcoral"),
main = "Total Quantity Sold per Product",
xlab = "Product",
ylab = "Total Quantity"
)
# Pie chart total revenue per customer tier
revenue_tier <- aggregate(Total ~ CustomerTier, data = transactions, sum)
# Calculate percentages
total_rev <- sum(revenue_tier$Total)
pct <- round(revenue_tier$Total / total_rev * 100, 1) # Round to 1 decimal place
# Combine tier names with percentages for labels
labels <- paste0(revenue_tier$CustomerTier, " (", pct, "%)")
# Create the pie chart with percentages inside labels
pie(
revenue_tier$Total,
labels = labels,
clockwise = TRUE,
main = "Proportion of Total Revenue per Customer Tier",
col = c("lightblue", "lightgreen", "lightcoral"))
# Stacked bar chart
# Stacked bar chart (quantity per product by tier)
qty_tier <- aggregate(Quantity ~ Product + CustomerTier, data = transactions, sum)
# xtabs untuk pivot (columns: tiers in order Low, Med, High)
qty_table <- xtabs(Quantity ~ Product + CustomerTier, data = qty_tier)
barplot(
qty_table,
beside = FALSE, # stacked
col = c("lightcoral", "lightgreen", "lightblue"), # Low, Med, High
main = "Quantity Sold per Product by Customer Tier",
xlab = "Product",
ylab = "Total Quantity",
legend.text = colnames(qty_table),
args.legend = list(x = "topright", bty = "n")
)
5 Exercise 5
Create Your Own Data Frame:
Objective: Create a data frame in R with 30 rows containing a mix of data types: continuous, discrete, nominal, and ordinal.
5.1 Instructions
Open RStudio or the R console.
Create a vector for each column in your data frame:
- Date: 30 dates (can be sequential or random within
a month/year)
- Continuous: numeric values that can take decimal
values (e.g., height, weight, temperature)
- Discrete: numeric values that can only take whole
numbers (e.g., number of items, number of vehicles)
- Nominal: categorical values with no
order (e.g., color, gender, city)
- Ordinal: categorical values with a defined order (e.g., Low, Medium, High; Beginner, Intermediate, Expert)
- Date: 30 dates (can be sequential or random within
a month/year)
Combine all vectors into a data frame called
my_data
.Check your data frame using
head()
orView()
to ensure it has 30 rows and the columns are correct.Optional tasks:
- Summarize each column using
summary()
- Count the frequency of each category for Nominal
and Ordinal columns using
table()
- Summarize each column using
5.2 Hints
- Use
seq.Date()
oras.Date()
to generate the Date column.
- Use
runif()
orrnorm()
for continuous numeric data.
- Use
sample()
for discrete, nominal, and ordinal data.
- Ensure the ordinal vector is created with
factor(..., levels = c("Low","Medium","High"), ordered = TRUE)
(or similar).
# Exercise 5: Create Your Own Data Frame
# Load package
library(reactable)
# Date: 30 sequential dates in October 2025
Date <- seq.Date(from = as.Date("2025-10-01"), by = "day", length.out = 30)
# Continuous variable
Temperature <- runif(30, min = 25.0, max = 35.0)
# Discrete variable
Items_Sold <- sample(1:20, size = 30, replace = TRUE)
# Nominal variable
City <- sample(c("Jakarta", "Bandung", "Surabaya", "Medan", "Cikarang"), size = 30, replace = TRUE)
# Ordinal variable
Satisfaction <- factor(
sample(c("Low", "Medium", "High"), size = 30, replace = TRUE),
levels = c("Low", "Medium", "High"),
ordered = TRUE
)
# Combine all columns into one data frame
my_data <- data.frame(Date, Temperature, Items_Sold, City, Satisfaction)
my_data$Satisfaction_order <- as.numeric(my_data$Satisfaction)
# melihat data dari my data
summary(my_data)
## Date Temperature Items_Sold City
## Min. :2025-10-01 Min. :25.20 Min. : 1.00 Length:30
## 1st Qu.:2025-10-08 1st Qu.:26.80 1st Qu.: 5.50 Class :character
## Median :2025-10-15 Median :29.88 Median :12.50 Mode :character
## Mean :2025-10-15 Mean :29.42 Mean :11.70
## 3rd Qu.:2025-10-22 3rd Qu.:31.87 3rd Qu.:17.75
## Max. :2025-10-30 Max. :34.73 Max. :20.00
## Satisfaction Satisfaction_order
## Low :12 Min. :1.0
## Medium: 9 1st Qu.:1.0
## High : 9 Median :2.0
## Mean :1.9
## 3rd Qu.:3.0
## Max. :3.0
# Display interactive table using reactable
reactable( my_data,
sortable = FALSE,
filterable = TRUE,
searchable = FALSE,
bordered = TRUE,
striped = TRUE,
highlight = TRUE,
defaultPageSize = 10,
columns = list(
Date = colDef(format = colFormat(date = TRUE)),
Temperature = colDef(format = colFormat(digits = 2)),
Satisfaction_order = colDef(format = colFormat(digits = 0)),
Satisfaction = colDef(
style = function(value) {
color <- switch(as.character(value),
"Low" = "red",
"Medium" = "orange",
"High" = "green")
list(background = color, color = "black", fontWeight = "bold")
}
)
),
defaultColDef = colDef(align = "center")
)
## Date Temperature Items_Sold City
## Min. :2025-10-01 Min. :25.20 Min. : 1.00 Length:30
## 1st Qu.:2025-10-08 1st Qu.:26.80 1st Qu.: 5.50 Class :character
## Median :2025-10-15 Median :29.88 Median :12.50 Mode :character
## Mean :2025-10-15 Mean :29.42 Mean :11.70
## 3rd Qu.:2025-10-22 3rd Qu.:31.87 3rd Qu.:17.75
## Max. :2025-10-30 Max. :34.73 Max. :20.00
## Satisfaction Satisfaction_order
## Low :12 Min. :1.0
## Medium: 9 1st Qu.:1.0
## High : 9 Median :2.0
## Mean :1.9
## 3rd Qu.:3.0
## Max. :3.0
## Frequency of City (Nominal):
##
## Bandung Cikarang Jakarta Medan Surabaya
## 12 3 5 5 5
##
## Frequency of Satisfaction (Ordinal):
##
## Low Medium High
## 12 9 9