Data Exploration

Exercises ~ Week 2

Logo


1 Exercise 1

The following table shows sample information for three students. Each observation represents a single student and includes details such as their unique student ID, name, age, total credits completed, major field of study, and year level.

This dataset demonstrates a mixture of variable types:

  • Nominal: StudentID, Name, Major
  • Numeric: Age (continuous), CreditsCompleted (discrete)
  • Ordinal: YearLevel (Freshman → Senior)
StudentID Name Age CreditsCompleted Major YearLevel
S001 Alice 20 45 Data Sains Sophomore
S002 Budi 21 60 Mathematics Junior
S003 Citra 19 30 Statistics Freshman
# 1. Create vectors for each variable
StudentID <- c("S001", "S002", "S003")       # Nominal / ID
Name <- c("Alice", "Budi", "Citra")          # Nominal / Name
Age <- c(20, 21, 19)                         # Numeric / Continuous
CreditsCompleted <- c(45, 60, 30)            # Numeric / Discrete

# Nominal
Major <- c("Data Sains", "Mathematics", "Statistics")  

# Ordinal
YearLevel <- factor(c("Sophomore", "Junior", "Freshman"),
                    levels = c("Freshman","Sophomore","Junior","Senior"),
                    ordered = TRUE)          

# 2. Combine all vectors into a data frame
students <- data.frame(
  StudentID, Name, Age, CreditsCompleted, Major, YearLevel,
  stringsAsFactors = FALSE
)

# 3. Display the data frame
print(students)
##   StudentID  Name Age CreditsCompleted       Major YearLevel
## 1      S001 Alice  20               45  Data Sains Sophomore
## 2      S002  Budi  21               60 Mathematics    Junior
## 3      S003 Citra  19               30  Statistics  Freshman

2 Exercise 2

Identify Data Types: Determine the type of data for each of the following variables:

# Install knitr package if not already installed
# install.packages("knitr")
library(knitr)

# Create a data frame for Data Types
variables_info <- data.frame(
  No = 1:5,
  Variable = c(
    "Number of vehicles passing through the toll road each day",
    "Student height in cm",
    "Employee gender (Male / Female)",
    "Customer satisfaction level: Low, Medium, High",
    "Respondent's favorite color: Red, Blue, Green"
  ),
  DataType = c(
    "Quantitative",
    "Quantitative",
    "Quantitative",
    "Qualitative",
    "Qualitative"
  ),
  Subtype = c(
    "Diskrete",
    "Continuous",
    "Nominal",
    "Ordinal",
    "Nominal"
  ),
  stringsAsFactors = FALSE
)

# Display the data frame as a neat table
kable(variables_info, 
      caption = "Table of Variables and Data Types")
Table of Variables and Data Types
No Variable DataType Subtype
1 Number of vehicles passing through the toll road each day Quantitative Diskrete
2 Student height in cm Quantitative Continuous
3 Employee gender (Male / Female) Quantitative Nominal
4 Customer satisfaction level: Low, Medium, High Qualitative Ordinal
5 Respondent’s favorite color: Red, Blue, Green Qualitative Nominal

3 Exercise 3

Classify Data Sources: Determine whether the following data comes from internal or external sources, and whether it is structured or unstructured:

# Install DT package if not already installed
# install.packages("DT")
library(DT)

# Create a data frame for data sources 
data_sources <- data.frame(
  No = 1:4,
  DataSource = c(
    "Daily sales transaction data of the company",
    "Weather reports from BMKG",
    "Product reviews on social media",
    "Warehouse inventory reports"
  ),
  Internal_External = c(
    "Internal",
    "Eksternal",
    "Eksternal",
    "Internal"
  ),
  Structured_Unstructured = c(
    "Structured",
    "Structured",
    "Unstructured",
    "Structured"
  ),
  stringsAsFactors = FALSE
)

# Display the data frame as a neat table
datatable(data_sources, 
          caption = "Table of Data Sources",
          rownames = FALSE) # hides the index column

4 Exercise 4

Dataset Structure: Consider the following transaction table:

Date Qty Price Product CustomerTier
2025-10-01 2 1000 Laptop High
2025-10-01 5 20 Mouse Medium
2025-10-02 1 1000 Laptop Low
2025-10-02 3 30 Keyboard Medium
2025-10-03 4 50 Mouse Medium
2025-10-03 2 1000 Laptop High
2025-10-04 6 25 Keyboard Low
2025-10-04 1 1000 Laptop High
2025-10-05 3 40 Mouse Low
2025-10-05 5 10 Keyboard Medium

Your Assignment Instructions: Creating a Transactions Table above in R

  1. Create a data frame in R called transactions containing the data above.

  2. Identify which variables are numeric and which are categorical

  3. Calculate total revenue for each transaction by multiplying Qty × Price and add it as a new column Total.

  4. Compute summary statistics:

    • Total quantity sold for each product
    • Total revenue per product
    • Average price per product
  5. Visualize the data:

    • Create a barplot showing total quantity sold per product.
    • Create a pie chart showing the proportion of total revenue per customer tier.
  6. Optional Challenge:

    • Find which date had the highest total revenue.
    • Create a stacked bar chart showing quantity sold per product by customer tier.

Hints: Use data.frame(), aggregate(), barplot(), pie(), and basic arithmetic operations in R.

4.1 Create Data Frame

transactions <- data.frame(
  Date = as.Date(c ("2025-10-01", "2025-10-01", "2025-10-02", "2025-10-02", 
                "2025-10-03", "2025-10-03", "2025-10-04", "2025-10-04",
                "2025-10-05", "2025-10-05")),
  Qty = c(2, 5, 1, 3, 4, 2, 6, 1, 3, 5),
  Price = c(1000, 20, 1000, 30, 50, 1000, 25, 1000, 40, 10),
  Product = c("Laptop", "Mouse", "Laptop", "Keyboard", "Mouse",
              "Laptop", "Keyboard", "Laptop", "Mouse", "Keyboard"),
  CustomerTier = c("High", "Medium", "Low", "Medium", "Medium",
                   "High", "Low", "High", "Low", "Medium"),
  stringsAsFactors = FALSE)

# View the dataset contents
kable(transactions,
      caption = "Transactions Data by Customer Tier")
Transactions Data by Customer Tier
Date Qty Price Product CustomerTier
2025-10-01 2 1000 Laptop High
2025-10-01 5 20 Mouse Medium
2025-10-02 1 1000 Laptop Low
2025-10-02 3 30 Keyboard Medium
2025-10-03 4 50 Mouse Medium
2025-10-03 2 1000 Laptop High
2025-10-04 6 25 Keyboard Low
2025-10-04 1 1000 Laptop High
2025-10-05 3 40 Mouse Low
2025-10-05 5 10 Keyboard Medium

4.2 Identify data types

str(transactions)  # Look at the (numeric vs categorical)
## 'data.frame':    10 obs. of  5 variables:
##  $ Date        : Date, format: "2025-10-01" "2025-10-01" ...
##  $ Qty         : num  2 5 1 3 4 2 6 1 3 5
##  $ Price       : num  1000 20 1000 30 50 1000 25 1000 40 10
##  $ Product     : chr  "Laptop" "Mouse" "Laptop" "Keyboard" ...
##  $ CustomerTier: chr  "High" "Medium" "Low" "Medium" ...

4.3 Add a Total column

transactions$Total <- transactions$Qty * transactions$Price

4.4 View results

print(transactions)
##          Date Qty Price  Product CustomerTier Total
## 1  2025-10-01   2  1000   Laptop         High  2000
## 2  2025-10-01   5    20    Mouse       Medium   100
## 3  2025-10-02   1  1000   Laptop          Low  1000
## 4  2025-10-02   3    30 Keyboard       Medium    90
## 5  2025-10-03   4    50    Mouse       Medium   200
## 6  2025-10-03   2  1000   Laptop         High  2000
## 7  2025-10-04   6    25 Keyboard          Low   150
## 8  2025-10-04   1  1000   Laptop         High  1000
## 9  2025-10-05   3    40    Mouse          Low   120
## 10 2025-10-05   5    10 Keyboard       Medium    50

4.5 Summary Statistics

### Total quantity sold per product
total_qty <- aggregate(Qty ~ Product, data = transactions, sum)

### Total revenue per product
total_revenue <- aggregate(Total ~ Product, data = transactions, sum)

### Average price per product
avg_price <- aggregate(Price ~ Product, data = transactions, mean)

4.6 Show summary results

cat("\n Total Quantity per Product \n")
## 
##  Total Quantity per Product
print(total_qty)
##    Product Qty
## 1 Keyboard  14
## 2   Laptop   6
## 3    Mouse  12
cat("\n Total Revenue per Product \n")
## 
##  Total Revenue per Product
print(total_revenue)
##    Product Total
## 1 Keyboard   290
## 2   Laptop  6000
## 3    Mouse   420
cat("\n Average Price per Product \n")
## 
##  Average Price per Product
print(avg_price)
##    Product      Price
## 1 Keyboard   21.66667
## 2   Laptop 1000.00000
## 3    Mouse   36.66667

4.7 Visualization

### (a) Barplot - total quantity sold per product
barplot(
  total_qty$Qty,
  names.arg = total_qty$Product,
  main = "Total Quantity Sold per Product",
  xlab = "Product",
  ylab = "Total Quantity",
  col = c("skyblue", "lightgreen", "orange")
)

### (b) Pie chart - proportion of total revenue per Customer Tier
revenue_tier <- aggregate(Total ~ CustomerTier, data = transactions, sum)
pie(
  revenue_tier$Total,
  labels = paste(revenue_tier$CustomerTier, "-", revenue_tier$Total),
  main = "Proportion of Total Revenue per Customer Tier",
  col = c("gold", "lightblue", "tomato")
)

4.8 Optional Challenge

### (a) Date with highest total revenue
date_revenue <- aggregate(Total ~ Date, data = transactions, sum)
max_rev_date <- date_revenue[which.max(date_revenue$Total), ]
cat("\nDate with highest total revenue:\n")
## 
## Date with highest total revenue:
print(max_rev_date)
##         Date Total
## 3 2025-10-03  2200
### (b) Stacked bar chart: quantity sold per product by customer tier
qty_stack <- aggregate(Qty ~ Product + CustomerTier, data = transactions, sum)
qty_matrix <- xtabs(Qty ~ CustomerTier + Product, data = qty_stack)
barplot(
  qty_matrix,
  beside = FALSE,
  main = "Quantity Sold per Product by Customer Tier",
  xlab = "Product",
  ylab = "Quantity Sold",
  col = c("lightblue", "gold", "tomato")
)
legend("topright", legend = rownames(qty_matrix),
       fill = c("lightblue", "gold", "tomato"), title = "Customer Tier")

5 Exercise 5

Create Your Own Data Frame:

Objective: Create a data frame in R with 30 rows containing a mix of data types: continuous, discrete, nominal, and ordinal.

5.0.1 Instructions

  1. Open RStudio or the R console.

  2. Create a vector for each column in your data frame:

    • Date: 30 dates (can be sequential or random within a month/year)
    • Continuous: numeric values that can take decimal values (e.g., height, weight, temperature)
    • Discrete: numeric values that can only take whole numbers (e.g., number of items, number of vehicles)
    • Nominal: categorical values with no order (e.g., color, gender, city)
    • Ordinal: categorical values with a defined order (e.g., Low, Medium, High; Beginner, Intermediate, Expert)
  3. Combine all vectors into a data frame called my_data.

  4. Check your data frame using head() or View() to ensure it has 30 rows and the columns are correct.

  5. Optional tasks:

    • Summarize each column using summary()
    • Count the frequency of each category for Nominal and Ordinal columns using table()

5.0.2 Hints

  • Use seq.Date() or as.Date() to generate the Date column.
  • Use runif() or rnorm() for continuous numeric data.
  • Use sample() for discrete, nominal, and ordinal data.
  • Ensure the ordinal vector is created with factor(..., levels = c("Low","Medium","High"), ordered = TRUE) (or similar).

5.1 Create each column

## Date: 30 consecutive dates in October 2025
Date <- seq.Date(from = as.Date("2025-10-01"), 
                 by = "day", 
                 length.out = 30)

## Continuous: for example body temperature data (in °C), use decimals
Continuous <- round(runif(30, min = 35.5, max = 37.5), 1)

## Discrete: e.g. number of items sold (whole number)
Discrete <- sample(1:50, 30, replace = TRUE)

## Nominal: e.g. cutomer's city of origin (no order)
Nominal <- sample(c("Jakarta", "Bandung", "Surabaya", "Medan", "Bali"),
                  30, replace = TRUE)

## Ordinal: e.g. satisfaction level (there is a sequence)
Ordinal <- factor(
  sample(c("Low", "Medium", "High"), 30, replace = TRUE),
  levels = c("Low", "Medium", "High"),
  ordered = TRUE
)

5.2 Combine all into a data frame

my_data <- data.frame(Date, Continuous, Discrete, Nominal, Ordinal)

5.3 Check the data contents

head(my_data)   # display the first 6 rows
View(my_data)   # open in Rstudio window (optional)

5.4 (Optional) Data Summary

summary(my_data)
##       Date              Continuous       Discrete      Nominal         
##  Min.   :2025-10-01   Min.   :35.50   Min.   : 5.0   Length:30         
##  1st Qu.:2025-10-08   1st Qu.:36.02   1st Qu.: 9.0   Class :character  
##  Median :2025-10-15   Median :36.55   Median :17.0   Mode  :character  
##  Mean   :2025-10-15   Mean   :36.49   Mean   :21.6                     
##  3rd Qu.:2025-10-22   3rd Qu.:36.77   3rd Qu.:29.0                     
##  Max.   :2025-10-30   Max.   :37.40   Max.   :49.0                     
##    Ordinal  
##  Low   :12  
##  Medium: 9  
##  High  : 9  
##             
##             
## 

5.5 Calculate frequency categories

cat("\n Nominal Frequency (City) \n")
## 
##  Nominal Frequency (City)
print(table(my_data$Nominal))
## 
##     Bali  Bandung  Jakarta    Medan Surabaya 
##        2        7        4        6       11
cat("\n Ordinal Frequency (Level of Satisfaction) \n")
## 
##  Ordinal Frequency (Level of Satisfaction)
print(table(my_data$Ordinal))
## 
##    Low Medium   High 
##     12      9      9
LS0tDQp0aXRsZTogIkRhdGEgRXhwbG9yYXRpb24iICAgICAgICMgTWFpbiB0aXRsZSBvZiB0aGUgZG9jdW1lbnQNCnN1YnRpdGxlOiAiRXhlcmNpc2VzIH4gV2VlayAyIiAgIyBTdWJ0aXRsZSBvciB0b3BpYyBmb3Igd2VlayAyDQphdXRob3I6IA0KLSAiWmlkaGFuIEFsZmFyZXppIEFmZGkiDQotICJEZW4gWXVhbiBGcmFzZXNza2EiDQotICJIYW5hZmkgTWFsaWsgUmlmYWkiDQotICJQYXNrYWxpcyBGYXJlbG5hdGEgWmFtYXNpIg0KLSAiTS5GaXRyYWggQWlkaWwgSGFyYWhhcCIjIFJlcGxhY2Ugd2l0aCB5b3VyIGZ1bGwgbmFtZQ0KZGF0ZTogICJgciBmb3JtYXQoU3lzLkRhdGUoKSwgJyVCICVkLCAlWScpYCIgIyBBdXRvIGRpc3BsYXlzIHRoZSBjdXJyZW50IGRhdGUNCm91dHB1dDogICAgICAgICAgICAgICAgICAgICAgICAgIyBPdXRwdXQgc2VjdGlvbiBkZWZpbmVzIHRoZSBmb3JtYXQgYW5kIGxheW91dCANCiAgcm1kZm9ybWF0czo6cmVhZHRoZWRvd246ICAgICAgIyBodHRwczovL2dpdGh1Yi5jb20vanViYS9ybWRmb3JtYXRzDQogICAgc2VsZl9jb250YWluZWQ6IHRydWUgICAgICAgICMgRW1iZWRzIGFsbCByZXNvdXJjZXMgKENTUywgSlMsIGltYWdlcykgDQogICAgdGh1bWJuYWlsczogdHJ1ZSAgICAgICAgICAgICMgRGlzcGxheXMgaW1hZ2UgdGh1bWJuYWlscyBpbiB0aGUgZG9jDQogICAgbGlnaHRib3g6IHRydWUgICAgICAgICAgICAgICMgRW5hYmxlcyBjbGljayB0byBlbmxhcmdlIGltYWdlcw0KICAgIGdhbGxlcnk6IHRydWUgICAgICAgICAgICAgICAjIEdyb3VwcyBpbWFnZXMgaW50byBhbiBpbnRlcmFjdGl2ZSBnYWxsZXJ5DQogICAgbnVtYmVyX3NlY3Rpb25zOiB0cnVlICAgICAgICMgQXV0b21hdGljYWxseSBudW1iZXJzIGFsbCBzZWN0aW9ucw0KICAgIGxpYl9kaXI6IGxpYnMgICAgICAgICAgICAgICAjIERpcmVjdG9yeSB3aGVyZSBKYXZhU2NyaXB0L0NTUyBsaWJyYXJpZXMNCiAgICBkZl9wcmludDogInBhZ2VkIiAgICAgICAgICAgIyBEaXNwbGF5cyBkYXRhIGZyYW1lcyBhcyBpbnRlcmFjdGl2ZSBwYWdlZCANCiAgICBjb2RlX2ZvbGRpbmc6ICJzaG93IiAgICAgICAgIyBBbGxvd3MgZm9sZGluZy91bmZvbGRpbmcgUiBjb2RlIGJsb2NrcyANCiAgICBjb2RlX2Rvd25sb2FkOiB5ZXMgICAgICAgICAgIyBBZGRzIGEgYnV0dG9uIHRvIGRvd25sb2FkIGFsbCBSIGNvZGUNCi0tLQ0KDQoNCjxpbWcgaWQ9IkZvdG8iIHNyYz0iQzovVXNlcnMvTGVub3ZvL09uZURyaXZlL0Rlc2t0b3AvVHVnYXMgWmlkaGFuIEEuQS9LZWxvbXBvay5qcGciIGFsdD0iTG9nbyIgc3R5bGU9IndpZHRoOjIwMHB4OyBkaXNwbGF5OiBibG9jazsgbWFyZ2luOiBhdXRvOyI+DQoNCi0tLQ0KDQojIEV4ZXJjaXNlIDENCg0KVGhlIGZvbGxvd2luZyB0YWJsZSBzaG93cyBzYW1wbGUgaW5mb3JtYXRpb24gZm9yIHRocmVlIHN0dWRlbnRzLiBFYWNoIG9ic2VydmF0aW9uIHJlcHJlc2VudHMgYSBzaW5nbGUgc3R1ZGVudCBhbmQgaW5jbHVkZXMgZGV0YWlscyBzdWNoIGFzIHRoZWlyIHVuaXF1ZSBzdHVkZW50IElELCBuYW1lLCBhZ2UsIHRvdGFsIGNyZWRpdHMgY29tcGxldGVkLCBtYWpvciBmaWVsZCBvZiBzdHVkeSwgYW5kIHllYXIgbGV2ZWwuICANCg0KVGhpcyBkYXRhc2V0IGRlbW9uc3RyYXRlcyBhIG1peHR1cmUgb2YgdmFyaWFibGUgdHlwZXM6ICANCg0KLSAqKk5vbWluYWw6KiogU3R1ZGVudElELCBOYW1lLCBNYWpvciAgDQotICoqTnVtZXJpYzoqKiBBZ2UgKGNvbnRpbnVvdXMpLCBDcmVkaXRzQ29tcGxldGVkIChkaXNjcmV0ZSkgIA0KLSAqKk9yZGluYWw6KiogWWVhckxldmVsIChGcmVzaG1hbiDihpIgU2VuaW9yKSAgDQoNCnwgU3R1ZGVudElEIHwgTmFtZSAgIHwgQWdlIHwgQ3JlZGl0c0NvbXBsZXRlZCB8IE1ham9yICAgICAgICAgICAgfCBZZWFyTGV2ZWwgfA0KfC0tLS0tLS0tLS0tfC0tLS0tLS0tfC0tLS0tfC0tLS0tLS0tLS0tLS0tLS0tfC0tLS0tLS0tLS0tLS0tLS0tfC0tLS0tLS0tLS0tfA0KfCBTMDAxICAgICAgfCBBbGljZSAgfCAyMCAgfCA0NSAgICAgICAgICAgICAgfCBEYXRhIFNhaW5zICAgICAgfCBTb3Bob21vcmUgfA0KfCBTMDAyICAgICAgfCBCdWRpICAgfCAyMSAgfCA2MCAgICAgICAgICAgICAgfCBNYXRoZW1hdGljcyAgICAgfCBKdW5pb3IgICAgfA0KfCBTMDAzICAgICAgfCBDaXRyYSAgfCAxOSAgfCAzMCAgICAgICAgICAgICAgfCBTdGF0aXN0aWNzICAgICAgfCBGcmVzaG1hbiAgfA0KDQpgYGB7cn0NCiMgMS4gQ3JlYXRlIHZlY3RvcnMgZm9yIGVhY2ggdmFyaWFibGUNClN0dWRlbnRJRCA8LSBjKCJTMDAxIiwgIlMwMDIiLCAiUzAwMyIpICAgICAgICMgTm9taW5hbCAvIElEDQpOYW1lIDwtIGMoIkFsaWNlIiwgIkJ1ZGkiLCAiQ2l0cmEiKSAgICAgICAgICAjIE5vbWluYWwgLyBOYW1lDQpBZ2UgPC0gYygyMCwgMjEsIDE5KSAgICAgICAgICAgICAgICAgICAgICAgICAjIE51bWVyaWMgLyBDb250aW51b3VzDQpDcmVkaXRzQ29tcGxldGVkIDwtIGMoNDUsIDYwLCAzMCkgICAgICAgICAgICAjIE51bWVyaWMgLyBEaXNjcmV0ZQ0KDQojIE5vbWluYWwNCk1ham9yIDwtIGMoIkRhdGEgU2FpbnMiLCAiTWF0aGVtYXRpY3MiLCAiU3RhdGlzdGljcyIpICANCg0KIyBPcmRpbmFsDQpZZWFyTGV2ZWwgPC0gZmFjdG9yKGMoIlNvcGhvbW9yZSIsICJKdW5pb3IiLCAiRnJlc2htYW4iKSwNCiAgICAgICAgICAgICAgICAgICAgbGV2ZWxzID0gYygiRnJlc2htYW4iLCJTb3Bob21vcmUiLCJKdW5pb3IiLCJTZW5pb3IiKSwNCiAgICAgICAgICAgICAgICAgICAgb3JkZXJlZCA9IFRSVUUpICAgICAgICAgIA0KDQojIDIuIENvbWJpbmUgYWxsIHZlY3RvcnMgaW50byBhIGRhdGEgZnJhbWUNCnN0dWRlbnRzIDwtIGRhdGEuZnJhbWUoDQogIFN0dWRlbnRJRCwgTmFtZSwgQWdlLCBDcmVkaXRzQ29tcGxldGVkLCBNYWpvciwgWWVhckxldmVsLA0KICBzdHJpbmdzQXNGYWN0b3JzID0gRkFMU0UNCikNCg0KIyAzLiBEaXNwbGF5IHRoZSBkYXRhIGZyYW1lDQpwcmludChzdHVkZW50cykNCmBgYA0KDQoNCiMgRXhlcmNpc2UgMg0KDQoqKklkZW50aWZ5IERhdGEgVHlwZXM6KiogRGV0ZXJtaW5lIHRoZSB0eXBlIG9mIGRhdGEgZm9yIGVhY2ggb2YgdGhlIGZvbGxvd2luZyB2YXJpYWJsZXM6DQoNCmBgYHtyfQ0KIyBJbnN0YWxsIGtuaXRyIHBhY2thZ2UgaWYgbm90IGFscmVhZHkgaW5zdGFsbGVkDQojIGluc3RhbGwucGFja2FnZXMoImtuaXRyIikNCmxpYnJhcnkoa25pdHIpDQoNCiMgQ3JlYXRlIGEgZGF0YSBmcmFtZSBmb3IgRGF0YSBUeXBlcw0KdmFyaWFibGVzX2luZm8gPC0gZGF0YS5mcmFtZSgNCiAgTm8gPSAxOjUsDQogIFZhcmlhYmxlID0gYygNCiAgICAiTnVtYmVyIG9mIHZlaGljbGVzIHBhc3NpbmcgdGhyb3VnaCB0aGUgdG9sbCByb2FkIGVhY2ggZGF5IiwNCiAgICAiU3R1ZGVudCBoZWlnaHQgaW4gY20iLA0KICAgICJFbXBsb3llZSBnZW5kZXIgKE1hbGUgLyBGZW1hbGUpIiwNCiAgICAiQ3VzdG9tZXIgc2F0aXNmYWN0aW9uIGxldmVsOiBMb3csIE1lZGl1bSwgSGlnaCIsDQogICAgIlJlc3BvbmRlbnQncyBmYXZvcml0ZSBjb2xvcjogUmVkLCBCbHVlLCBHcmVlbiINCiAgKSwNCiAgRGF0YVR5cGUgPSBjKA0KICAgICJRdWFudGl0YXRpdmUiLA0KICAgICJRdWFudGl0YXRpdmUiLA0KICAgICJRdWFudGl0YXRpdmUiLA0KICAgICJRdWFsaXRhdGl2ZSIsDQogICAgIlF1YWxpdGF0aXZlIg0KICApLA0KICBTdWJ0eXBlID0gYygNCiAgICAiRGlza3JldGUiLA0KICAgICJDb250aW51b3VzIiwNCiAgICAiTm9taW5hbCIsDQogICAgIk9yZGluYWwiLA0KICAgICJOb21pbmFsIg0KICApLA0KICBzdHJpbmdzQXNGYWN0b3JzID0gRkFMU0UNCikNCg0KIyBEaXNwbGF5IHRoZSBkYXRhIGZyYW1lIGFzIGEgbmVhdCB0YWJsZQ0Ka2FibGUodmFyaWFibGVzX2luZm8sIA0KICAgICAgY2FwdGlvbiA9ICJUYWJsZSBvZiBWYXJpYWJsZXMgYW5kIERhdGEgVHlwZXMiKQ0KYGBgDQotLS0NCg0KIyBFeGVyY2lzZSAzDQoNCioqQ2xhc3NpZnkgRGF0YSBTb3VyY2VzOioqIERldGVybWluZSB3aGV0aGVyIHRoZSBmb2xsb3dpbmcgZGF0YSBjb21lcyBmcm9tICoqaW50ZXJuYWwqKiBvciAqKmV4dGVybmFsIHNvdXJjZXMqKiwgYW5kIHdoZXRoZXIgaXQgaXMgKipzdHJ1Y3R1cmVkKiogb3IgKip1bnN0cnVjdHVyZWQqKjoNCg0KYGBge3J9DQojIEluc3RhbGwgRFQgcGFja2FnZSBpZiBub3QgYWxyZWFkeSBpbnN0YWxsZWQNCiMgaW5zdGFsbC5wYWNrYWdlcygiRFQiKQ0KbGlicmFyeShEVCkNCg0KIyBDcmVhdGUgYSBkYXRhIGZyYW1lIGZvciBkYXRhIHNvdXJjZXMgDQpkYXRhX3NvdXJjZXMgPC0gZGF0YS5mcmFtZSgNCiAgTm8gPSAxOjQsDQogIERhdGFTb3VyY2UgPSBjKA0KICAgICJEYWlseSBzYWxlcyB0cmFuc2FjdGlvbiBkYXRhIG9mIHRoZSBjb21wYW55IiwNCiAgICAiV2VhdGhlciByZXBvcnRzIGZyb20gQk1LRyIsDQogICAgIlByb2R1Y3QgcmV2aWV3cyBvbiBzb2NpYWwgbWVkaWEiLA0KICAgICJXYXJlaG91c2UgaW52ZW50b3J5IHJlcG9ydHMiDQogICksDQogIEludGVybmFsX0V4dGVybmFsID0gYygNCiAgICAiSW50ZXJuYWwiLA0KICAgICJFa3N0ZXJuYWwiLA0KICAgICJFa3N0ZXJuYWwiLA0KICAgICJJbnRlcm5hbCINCiAgKSwNCiAgU3RydWN0dXJlZF9VbnN0cnVjdHVyZWQgPSBjKA0KICAgICJTdHJ1Y3R1cmVkIiwNCiAgICAiU3RydWN0dXJlZCIsDQogICAgIlVuc3RydWN0dXJlZCIsDQogICAgIlN0cnVjdHVyZWQiDQogICksDQogIHN0cmluZ3NBc0ZhY3RvcnMgPSBGQUxTRQ0KKQ0KDQojIERpc3BsYXkgdGhlIGRhdGEgZnJhbWUgYXMgYSBuZWF0IHRhYmxlDQpkYXRhdGFibGUoZGF0YV9zb3VyY2VzLCANCiAgICAgICAgICBjYXB0aW9uID0gIlRhYmxlIG9mIERhdGEgU291cmNlcyIsDQogICAgICAgICAgcm93bmFtZXMgPSBGQUxTRSkgIyBoaWRlcyB0aGUgaW5kZXggY29sdW1uDQpgYGANCg0KLS0tDQoNCiMgRXhlcmNpc2UgNA0KDQoqKkRhdGFzZXQgU3RydWN0dXJlOioqIENvbnNpZGVyIHRoZSBmb2xsb3dpbmcgdHJhbnNhY3Rpb24gdGFibGU6DQoNCnwgRGF0ZSAgICAgICB8IFF0eSB8IFByaWNlIHwgUHJvZHVjdCAgfCBDdXN0b21lclRpZXIgfA0KfC0tLS0tLS0tLS0tLXwtLS0tLXwtLS0tLS0tfC0tLS0tLS0tLS18LS0tLS0tLS0tLS0tLS18DQp8IDIwMjUtMTAtMDEgfCAyICAgfCAxMDAwICB8IExhcHRvcCAgIHwgSGlnaCAgICAgICAgIHwNCnwgMjAyNS0xMC0wMSB8IDUgICB8IDIwICAgIHwgTW91c2UgICAgfCBNZWRpdW0gICAgICAgfA0KfCAyMDI1LTEwLTAyIHwgMSAgIHwgMTAwMCAgfCBMYXB0b3AgICB8IExvdyAgICAgICAgICB8DQp8IDIwMjUtMTAtMDIgfCAzICAgfCAzMCAgICB8IEtleWJvYXJkIHwgTWVkaXVtICAgICAgIHwNCnwgMjAyNS0xMC0wMyB8IDQgICB8IDUwICAgIHwgTW91c2UgICAgfCBNZWRpdW0gICAgICAgfA0KfCAyMDI1LTEwLTAzIHwgMiAgIHwgMTAwMCAgfCBMYXB0b3AgICB8IEhpZ2ggICAgICAgICB8DQp8IDIwMjUtMTAtMDQgfCA2ICAgfCAyNSAgICB8IEtleWJvYXJkIHwgTG93ICAgICAgICAgIHwNCnwgMjAyNS0xMC0wNCB8IDEgICB8IDEwMDAgIHwgTGFwdG9wICAgfCBIaWdoICAgICAgICAgfA0KfCAyMDI1LTEwLTA1IHwgMyAgIHwgNDAgICAgfCBNb3VzZSAgICB8IExvdyAgICAgICAgICB8DQp8IDIwMjUtMTAtMDUgfCA1ICAgfCAxMCAgICB8IEtleWJvYXJkIHwgTWVkaXVtICAgICAgIHwNCg0KDQoqKllvdXIgQXNzaWdubWVudCBJbnN0cnVjdGlvbnM6KiogQ3JlYXRpbmcgYSBUcmFuc2FjdGlvbnMgVGFibGUgYWJvdmUgaW4gUg0KDQoxLiAqKkNyZWF0ZSBhIGRhdGEgZnJhbWUqKiBpbiBSIGNhbGxlZCBgdHJhbnNhY3Rpb25zYCBjb250YWluaW5nIHRoZSBkYXRhIGFib3ZlLg0KDQoyLiBJZGVudGlmeSB3aGljaCB2YXJpYWJsZXMgYXJlIG51bWVyaWMgYW5kIHdoaWNoIGFyZSBjYXRlZ29yaWNhbA0KDQozLiAqKkNhbGN1bGF0ZSB0b3RhbCByZXZlbnVlKiogZm9yIGVhY2ggdHJhbnNhY3Rpb24gYnkgbXVsdGlwbHlpbmcgYFF0eSDDlyBQcmljZWAgYW5kIGFkZCBpdCBhcyBhIG5ldyBjb2x1bW4gYFRvdGFsYC4NCg0KNC4gKipDb21wdXRlIHN1bW1hcnkgc3RhdGlzdGljcyoqOg0KICAgLSBUb3RhbCBxdWFudGl0eSBzb2xkIGZvciBlYWNoIHByb2R1Y3QNCiAgIC0gVG90YWwgcmV2ZW51ZSBwZXIgcHJvZHVjdA0KICAgLSBBdmVyYWdlIHByaWNlIHBlciBwcm9kdWN0DQoNCjUuICoqVmlzdWFsaXplIHRoZSBkYXRhKio6DQogICAtIENyZWF0ZSBhICoqYmFycGxvdCoqIHNob3dpbmcgdG90YWwgcXVhbnRpdHkgc29sZCBwZXIgcHJvZHVjdC4NCiAgIC0gQ3JlYXRlIGEgKipwaWUgY2hhcnQqKiBzaG93aW5nIHRoZSBwcm9wb3J0aW9uIG9mIHRvdGFsIHJldmVudWUgcGVyIGN1c3RvbWVyIHRpZXIuDQoNCjYuICoqT3B0aW9uYWwgQ2hhbGxlbmdlKio6DQogICAtIEZpbmQgd2hpY2ggKipkYXRlKiogaGFkIHRoZSBoaWdoZXN0IHRvdGFsIHJldmVudWUuDQogICAtIENyZWF0ZSBhICoqc3RhY2tlZCBiYXIgY2hhcnQqKiBzaG93aW5nIHF1YW50aXR5IHNvbGQgcGVyIHByb2R1Y3QgYnkgY3VzdG9tZXIgdGllci4NCg0KKipIaW50czoqKiBVc2UgYGRhdGEuZnJhbWUoKWAsIGBhZ2dyZWdhdGUoKWAsIGBiYXJwbG90KClgLCBgcGllKClgLCBhbmQgYmFzaWMgYXJpdGhtZXRpYyBvcGVyYXRpb25zIGluIFIuDQoNCg0KIyMgQ3JlYXRlIERhdGEgRnJhbWUNCmBgYHtSfQ0KdHJhbnNhY3Rpb25zIDwtIGRhdGEuZnJhbWUoDQogIERhdGUgPSBhcy5EYXRlKGMgKCIyMDI1LTEwLTAxIiwgIjIwMjUtMTAtMDEiLCAiMjAyNS0xMC0wMiIsICIyMDI1LTEwLTAyIiwgDQogICAgICAgICAgICAgICAgIjIwMjUtMTAtMDMiLCAiMjAyNS0xMC0wMyIsICIyMDI1LTEwLTA0IiwgIjIwMjUtMTAtMDQiLA0KICAgICAgICAgICAgICAgICIyMDI1LTEwLTA1IiwgIjIwMjUtMTAtMDUiKSksDQogIFF0eSA9IGMoMiwgNSwgMSwgMywgNCwgMiwgNiwgMSwgMywgNSksDQogIFByaWNlID0gYygxMDAwLCAyMCwgMTAwMCwgMzAsIDUwLCAxMDAwLCAyNSwgMTAwMCwgNDAsIDEwKSwNCiAgUHJvZHVjdCA9IGMoIkxhcHRvcCIsICJNb3VzZSIsICJMYXB0b3AiLCAiS2V5Ym9hcmQiLCAiTW91c2UiLA0KICAgICAgICAgICAgICAiTGFwdG9wIiwgIktleWJvYXJkIiwgIkxhcHRvcCIsICJNb3VzZSIsICJLZXlib2FyZCIpLA0KICBDdXN0b21lclRpZXIgPSBjKCJIaWdoIiwgIk1lZGl1bSIsICJMb3ciLCAiTWVkaXVtIiwgIk1lZGl1bSIsDQogICAgICAgICAgICAgICAgICAgIkhpZ2giLCAiTG93IiwgIkhpZ2giLCAiTG93IiwgIk1lZGl1bSIpLA0KICBzdHJpbmdzQXNGYWN0b3JzID0gRkFMU0UpDQoNCiMgVmlldyB0aGUgZGF0YXNldCBjb250ZW50cw0Ka2FibGUodHJhbnNhY3Rpb25zLA0KICAgICAgY2FwdGlvbiA9ICJUcmFuc2FjdGlvbnMgRGF0YSBieSBDdXN0b21lciBUaWVyIikNCmBgYA0KDQojIyBJZGVudGlmeSBkYXRhIHR5cGVzDQpgYGB7Un0NCnN0cih0cmFuc2FjdGlvbnMpICAjIExvb2sgYXQgdGhlIChudW1lcmljIHZzIGNhdGVnb3JpY2FsKQ0KYGBgDQoNCiMjIEFkZCBhIFRvdGFsIGNvbHVtbg0KYGBge1J9DQp0cmFuc2FjdGlvbnMkVG90YWwgPC0gdHJhbnNhY3Rpb25zJFF0eSAqIHRyYW5zYWN0aW9ucyRQcmljZQ0KYGBgDQoNCiMjIFZpZXcgcmVzdWx0cw0KYGBge1J9DQpwcmludCh0cmFuc2FjdGlvbnMpDQpgYGANCg0KIyMgU3VtbWFyeSBTdGF0aXN0aWNzDQpgYGB7Un0NCg0KIyMjIFRvdGFsIHF1YW50aXR5IHNvbGQgcGVyIHByb2R1Y3QNCnRvdGFsX3F0eSA8LSBhZ2dyZWdhdGUoUXR5IH4gUHJvZHVjdCwgZGF0YSA9IHRyYW5zYWN0aW9ucywgc3VtKQ0KDQojIyMgVG90YWwgcmV2ZW51ZSBwZXIgcHJvZHVjdA0KdG90YWxfcmV2ZW51ZSA8LSBhZ2dyZWdhdGUoVG90YWwgfiBQcm9kdWN0LCBkYXRhID0gdHJhbnNhY3Rpb25zLCBzdW0pDQoNCiMjIyBBdmVyYWdlIHByaWNlIHBlciBwcm9kdWN0DQphdmdfcHJpY2UgPC0gYWdncmVnYXRlKFByaWNlIH4gUHJvZHVjdCwgZGF0YSA9IHRyYW5zYWN0aW9ucywgbWVhbikNCmBgYA0KDQojIyBTaG93IHN1bW1hcnkgcmVzdWx0cw0KYGBge1J9DQpjYXQoIlxuIFRvdGFsIFF1YW50aXR5IHBlciBQcm9kdWN0IFxuIikNCnByaW50KHRvdGFsX3F0eSkNCmNhdCgiXG4gVG90YWwgUmV2ZW51ZSBwZXIgUHJvZHVjdCBcbiIpDQpwcmludCh0b3RhbF9yZXZlbnVlKQ0KY2F0KCJcbiBBdmVyYWdlIFByaWNlIHBlciBQcm9kdWN0IFxuIikNCnByaW50KGF2Z19wcmljZSkNCmBgYA0KDQojIyBWaXN1YWxpemF0aW9uDQpgYGB7Un0NCg0KIyMjIChhKSBCYXJwbG90IC0gdG90YWwgcXVhbnRpdHkgc29sZCBwZXIgcHJvZHVjdA0KYmFycGxvdCgNCiAgdG90YWxfcXR5JFF0eSwNCiAgbmFtZXMuYXJnID0gdG90YWxfcXR5JFByb2R1Y3QsDQogIG1haW4gPSAiVG90YWwgUXVhbnRpdHkgU29sZCBwZXIgUHJvZHVjdCIsDQogIHhsYWIgPSAiUHJvZHVjdCIsDQogIHlsYWIgPSAiVG90YWwgUXVhbnRpdHkiLA0KICBjb2wgPSBjKCJza3libHVlIiwgImxpZ2h0Z3JlZW4iLCAib3JhbmdlIikNCikNCg0KIyMjIChiKSBQaWUgY2hhcnQgLSBwcm9wb3J0aW9uIG9mIHRvdGFsIHJldmVudWUgcGVyIEN1c3RvbWVyIFRpZXINCnJldmVudWVfdGllciA8LSBhZ2dyZWdhdGUoVG90YWwgfiBDdXN0b21lclRpZXIsIGRhdGEgPSB0cmFuc2FjdGlvbnMsIHN1bSkNCnBpZSgNCiAgcmV2ZW51ZV90aWVyJFRvdGFsLA0KICBsYWJlbHMgPSBwYXN0ZShyZXZlbnVlX3RpZXIkQ3VzdG9tZXJUaWVyLCAiLSIsIHJldmVudWVfdGllciRUb3RhbCksDQogIG1haW4gPSAiUHJvcG9ydGlvbiBvZiBUb3RhbCBSZXZlbnVlIHBlciBDdXN0b21lciBUaWVyIiwNCiAgY29sID0gYygiZ29sZCIsICJsaWdodGJsdWUiLCAidG9tYXRvIikNCikNCmBgYA0KDQojIyBPcHRpb25hbCBDaGFsbGVuZ2UNCmBgYHtyfQ0KDQojIyMgKGEpIERhdGUgd2l0aCBoaWdoZXN0IHRvdGFsIHJldmVudWUNCmRhdGVfcmV2ZW51ZSA8LSBhZ2dyZWdhdGUoVG90YWwgfiBEYXRlLCBkYXRhID0gdHJhbnNhY3Rpb25zLCBzdW0pDQptYXhfcmV2X2RhdGUgPC0gZGF0ZV9yZXZlbnVlW3doaWNoLm1heChkYXRlX3JldmVudWUkVG90YWwpLCBdDQpjYXQoIlxuRGF0ZSB3aXRoIGhpZ2hlc3QgdG90YWwgcmV2ZW51ZTpcbiIpDQpwcmludChtYXhfcmV2X2RhdGUpDQoNCiMjIyAoYikgU3RhY2tlZCBiYXIgY2hhcnQ6IHF1YW50aXR5IHNvbGQgcGVyIHByb2R1Y3QgYnkgY3VzdG9tZXIgdGllcg0KcXR5X3N0YWNrIDwtIGFnZ3JlZ2F0ZShRdHkgfiBQcm9kdWN0ICsgQ3VzdG9tZXJUaWVyLCBkYXRhID0gdHJhbnNhY3Rpb25zLCBzdW0pDQpxdHlfbWF0cml4IDwtIHh0YWJzKFF0eSB+IEN1c3RvbWVyVGllciArIFByb2R1Y3QsIGRhdGEgPSBxdHlfc3RhY2spDQpiYXJwbG90KA0KICBxdHlfbWF0cml4LA0KICBiZXNpZGUgPSBGQUxTRSwNCiAgbWFpbiA9ICJRdWFudGl0eSBTb2xkIHBlciBQcm9kdWN0IGJ5IEN1c3RvbWVyIFRpZXIiLA0KICB4bGFiID0gIlByb2R1Y3QiLA0KICB5bGFiID0gIlF1YW50aXR5IFNvbGQiLA0KICBjb2wgPSBjKCJsaWdodGJsdWUiLCAiZ29sZCIsICJ0b21hdG8iKQ0KKQ0KbGVnZW5kKCJ0b3ByaWdodCIsIGxlZ2VuZCA9IHJvd25hbWVzKHF0eV9tYXRyaXgpLA0KICAgICAgIGZpbGwgPSBjKCJsaWdodGJsdWUiLCAiZ29sZCIsICJ0b21hdG8iKSwgdGl0bGUgPSAiQ3VzdG9tZXIgVGllciIpDQpgYGANCg0KIyBFeGVyY2lzZSA1DQoNCioqQ3JlYXRlIFlvdXIgT3duIERhdGEgRnJhbWU6KioNCg0KKipPYmplY3RpdmU6KiogQ3JlYXRlIGEgZGF0YSBmcmFtZSBpbiBSIHdpdGggKiozMCByb3dzKiogY29udGFpbmluZyBhIG1peCBvZiBkYXRhIHR5cGVzOiBjb250aW51b3VzLCBkaXNjcmV0ZSwgbm9taW5hbCwgYW5kIG9yZGluYWwuICANCg0KIyMjIEluc3RydWN0aW9ucw0KDQoxLiAqKk9wZW4gUlN0dWRpbyoqIG9yIHRoZSBSIGNvbnNvbGUuICANCg0KMi4gKipDcmVhdGUgYSB2ZWN0b3IgZm9yIGVhY2ggY29sdW1uKiogaW4geW91ciBkYXRhIGZyYW1lOiAgDQoNCiAgIC0gKipEYXRlKio6IDMwIGRhdGVzIChjYW4gYmUgc2VxdWVudGlhbCBvciByYW5kb20gd2l0aGluIGEgbW9udGgveWVhcikgIA0KICAgLSAqKkNvbnRpbnVvdXMqKjogbnVtZXJpYyB2YWx1ZXMgdGhhdCBjYW4gdGFrZSBkZWNpbWFsIHZhbHVlcyAoZS5nLiwgaGVpZ2h0LCB3ZWlnaHQsIHRlbXBlcmF0dXJlKSAgDQogICAtICoqRGlzY3JldGUqKjogbnVtZXJpYyB2YWx1ZXMgdGhhdCBjYW4gb25seSB0YWtlIHdob2xlIG51bWJlcnMgKGUuZy4sIG51bWJlciBvZiBpdGVtcywgbnVtYmVyIG9mIHZlaGljbGVzKSAgDQogICAtICoqTm9taW5hbCoqOiBjYXRlZ29yaWNhbCB2YWx1ZXMgd2l0aCAqKm5vIG9yZGVyKiogKGUuZy4sIGNvbG9yLCBnZW5kZXIsIGNpdHkpICANCiAgIC0gKipPcmRpbmFsKio6IGNhdGVnb3JpY2FsIHZhbHVlcyB3aXRoIGEgKipkZWZpbmVkIG9yZGVyKiogKGUuZy4sIExvdywgTWVkaXVtLCBIaWdoOyBCZWdpbm5lciwgSW50ZXJtZWRpYXRlLCBFeHBlcnQpICANCg0KMy4gKipDb21iaW5lIGFsbCB2ZWN0b3JzIGludG8gYSBkYXRhIGZyYW1lKiogY2FsbGVkIGBteV9kYXRhYC4gIA0KDQo0LiAqKkNoZWNrIHlvdXIgZGF0YSBmcmFtZSoqIHVzaW5nIGBoZWFkKClgIG9yIGBWaWV3KClgIHRvIGVuc3VyZSBpdCBoYXMgKiozMCByb3dzKiogYW5kIHRoZSBjb2x1bW5zIGFyZSBjb3JyZWN0LiAgDQoNCjUuICoqT3B0aW9uYWwgdGFza3MqKjogIA0KICAgLSBTdW1tYXJpemUgZWFjaCBjb2x1bW4gdXNpbmcgYHN1bW1hcnkoKWAgIA0KICAgLSBDb3VudCB0aGUgZnJlcXVlbmN5IG9mIGVhY2ggY2F0ZWdvcnkgZm9yICoqTm9taW5hbCoqIGFuZCAqKk9yZGluYWwqKiBjb2x1bW5zIHVzaW5nIGB0YWJsZSgpYCAgDQoNCiMjIyBIaW50cw0KDQotIFVzZSBgc2VxLkRhdGUoKWAgb3IgYGFzLkRhdGUoKWAgdG8gZ2VuZXJhdGUgdGhlIERhdGUgY29sdW1uLiAgDQotIFVzZSBgcnVuaWYoKWAgb3IgYHJub3JtKClgIGZvciBjb250aW51b3VzIG51bWVyaWMgZGF0YS4gIA0KLSBVc2UgYHNhbXBsZSgpYCBmb3IgZGlzY3JldGUsIG5vbWluYWwsIGFuZCBvcmRpbmFsIGRhdGEuICANCi0gRW5zdXJlIHRoZSAqKm9yZGluYWwgdmVjdG9yKiogaXMgY3JlYXRlZCB3aXRoIGBmYWN0b3IoLi4uLCBsZXZlbHMgPSBjKCJMb3ciLCJNZWRpdW0iLCJIaWdoIiksIG9yZGVyZWQgPSBUUlVFKWAgKG9yIHNpbWlsYXIpLiAgDQoNCg0KIyMgQ3JlYXRlIGVhY2ggY29sdW1uDQpgYGB7Un0NCiMjIERhdGU6IDMwIGNvbnNlY3V0aXZlIGRhdGVzIGluIE9jdG9iZXIgMjAyNQ0KRGF0ZSA8LSBzZXEuRGF0ZShmcm9tID0gYXMuRGF0ZSgiMjAyNS0xMC0wMSIpLCANCiAgICAgICAgICAgICAgICAgYnkgPSAiZGF5IiwgDQogICAgICAgICAgICAgICAgIGxlbmd0aC5vdXQgPSAzMCkNCg0KIyMgQ29udGludW91czogZm9yIGV4YW1wbGUgYm9keSB0ZW1wZXJhdHVyZSBkYXRhIChpbiDCsEMpLCB1c2UgZGVjaW1hbHMNCkNvbnRpbnVvdXMgPC0gcm91bmQocnVuaWYoMzAsIG1pbiA9IDM1LjUsIG1heCA9IDM3LjUpLCAxKQ0KDQojIyBEaXNjcmV0ZTogZS5nLiBudW1iZXIgb2YgaXRlbXMgc29sZCAod2hvbGUgbnVtYmVyKQ0KRGlzY3JldGUgPC0gc2FtcGxlKDE6NTAsIDMwLCByZXBsYWNlID0gVFJVRSkNCg0KIyMgTm9taW5hbDogZS5nLiBjdXRvbWVyJ3MgY2l0eSBvZiBvcmlnaW4gKG5vIG9yZGVyKQ0KTm9taW5hbCA8LSBzYW1wbGUoYygiSmFrYXJ0YSIsICJCYW5kdW5nIiwgIlN1cmFiYXlhIiwgIk1lZGFuIiwgIkJhbGkiKSwNCiAgICAgICAgICAgICAgICAgIDMwLCByZXBsYWNlID0gVFJVRSkNCg0KIyMgT3JkaW5hbDogZS5nLiBzYXRpc2ZhY3Rpb24gbGV2ZWwgKHRoZXJlIGlzIGEgc2VxdWVuY2UpDQpPcmRpbmFsIDwtIGZhY3RvcigNCiAgc2FtcGxlKGMoIkxvdyIsICJNZWRpdW0iLCAiSGlnaCIpLCAzMCwgcmVwbGFjZSA9IFRSVUUpLA0KICBsZXZlbHMgPSBjKCJMb3ciLCAiTWVkaXVtIiwgIkhpZ2giKSwNCiAgb3JkZXJlZCA9IFRSVUUNCikNCmBgYA0KDQojIyBDb21iaW5lIGFsbCBpbnRvIGEgZGF0YSBmcmFtZQ0KYGBge1J9DQpteV9kYXRhIDwtIGRhdGEuZnJhbWUoRGF0ZSwgQ29udGludW91cywgRGlzY3JldGUsIE5vbWluYWwsIE9yZGluYWwpDQpgYGANCg0KIyMgQ2hlY2sgdGhlIGRhdGEgY29udGVudHMNCmBgYHtSfQ0KaGVhZChteV9kYXRhKSAgICMgZGlzcGxheSB0aGUgZmlyc3QgNiByb3dzDQpWaWV3KG15X2RhdGEpICAgIyBvcGVuIGluIFJzdHVkaW8gd2luZG93IChvcHRpb25hbCkNCmBgYA0KDQojIyAoT3B0aW9uYWwpIERhdGEgU3VtbWFyeQ0KYGBge1J9DQpzdW1tYXJ5KG15X2RhdGEpDQpgYGANCiMjIENhbGN1bGF0ZSBmcmVxdWVuY3kgY2F0ZWdvcmllcw0KYGBge1J9DQpjYXQoIlxuIE5vbWluYWwgRnJlcXVlbmN5IChDaXR5KSBcbiIpDQpwcmludCh0YWJsZShteV9kYXRhJE5vbWluYWwpKQ0KDQpjYXQoIlxuIE9yZGluYWwgRnJlcXVlbmN5IChMZXZlbCBvZiBTYXRpc2ZhY3Rpb24pIFxuIikNCnByaW50KHRhYmxlKG15X2RhdGEkT3JkaW5hbCkpDQpgYGANCg0KDQo=