Nations Dataset Charts

Author

Sajutee Mukrabine

library(tidyverse)
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr     1.1.4     ✔ readr     2.1.5
✔ forcats   1.0.0     ✔ stringr   1.5.1
✔ ggplot2   3.5.2     ✔ tibble    3.3.0
✔ lubridate 1.9.4     ✔ tidyr     1.3.1
✔ purrr     1.1.0     
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(dplyr)
library(ggplot2)
setwd("C:/Users/sajut/OneDrive/Desktop/DATA_110")

nations <- read_csv("nations_data.csv")
Rows: 5275 Columns: 10
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (5): iso2c, iso3c, country, region, income
dbl (5): year, gdp_percap, population, birth_rate, neonat_mortal_rate

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
head(nations)
# A tibble: 6 × 10
  iso2c iso3c country  year gdp_percap population birth_rate neonat_mortal_rate
  <chr> <chr> <chr>   <dbl>      <dbl>      <dbl>      <dbl>              <dbl>
1 AD    AND   Andorra  1996         NA      64291       10.9                2.8
2 AD    AND   Andorra  1994         NA      62707       10.9                3.2
3 AD    AND   Andorra  2003         NA      74783       10.3                2  
4 AD    AND   Andorra  1990         NA      54511       11.9                4.3
5 AD    AND   Andorra  2009         NA      85474        9.9                1.7
6 AD    AND   Andorra  2011         NA      82326       NA                  1.6
# ℹ 2 more variables: region <chr>, income <chr>

Giving the GDP of each country in trillions of dollars

nations <- nations |>
  mutate(gdp = (gdp_percap * population)/(10^12)) #help from google 1000000000000 can be written as (10^12)    
nations <- nations |>
  filter(country %in% c("Canada", "Belarus","Nigeria", "Singapore"))
plot1 <- ggplot(nations, aes(x = year, y = gdp, color = country)) + 
  geom_point() + 
  geom_line() +
  scale_color_brewer(palette = "Set1") +
  labs(title = "GDP for Selected Countries in Trillions of Dollars",
    x = "Year",
    y = "GDP ($ trillions)")
plot1

nations <- nations |>
  group_by(region, year) |>
  summarise(GDP = sum(gdp, na.rm = TRUE))
`summarise()` has grouped output by 'region'. You can override using the
`.groups` argument.
plot2 <- ggplot(nations, aes(x = year, y = GDP, fill = region)) +
  geom_area(color = "white") +
  scale_fill_brewer(palette = "Set2") +
  labs(title = "GDP by Region Over Time",
       x = "Year",
       y = "GDP ($ trillions)")
plot2