podatki<- read.table ("./Maraton.csv", 
                      header= TRUE, 
                      sep =";", 
                      dec = ",")
head(podatki)
##   ID Teža Višina Tlak Utrip Hemoglobin Hematokrit Holesterol Glukoza Spol
## 1  1   72  179.0  105    64        160         50        4.9     4.7    1
## 2  2   68  178.0  105    60        158         51        4.8     4.9    0
## 3  3   64  174.0  109    54        155         51        4.5     7.0    0
## 4  4   63  174.0  112    54        153         58        8.0     7.2    0
## 5  5   61  173.5  100    53        152         59        4.6     6.7    0
## 6  6   60  173.0   99    53        158         49        3.9     6.0    0
round(mean(podatki$Višina), 2)
## [1] 176.96
round(sd(podatki$Višina),2)
## [1] 5.85
podatki$Spol_factor<- factor(podatki$Spol, 
                             levels = c(0,1), 
                             labels = c("Z","M"))
#install.packages("psych")
library(psych)
describeBy(podatki$Glukoza, group=podatki$Spol)
## 
##  Descriptive statistics by group 
## group: 0
##    vars  n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 14 5.96 0.93    5.8    5.97 1.33 4.6 7.2   2.6 0.12    -1.62 0.25
## ------------------------------------------------------------ 
## group: 1
##    vars  n mean  sd median trimmed  mad min max range skew kurtosis   se
## X1    1 21 4.54 0.7    4.6    4.45 0.74 3.8   6   2.2 0.97    -0.13 0.15
podatkiZ <- podatki[podatki$Spol_factor == "Z"  ,  ]
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
podatkiM <- podatki %>%
  filter(Spol_factor == "M")
#install.packages("pastecs")
library(pastecs)
## 
## Attaching package: 'pastecs'
## The following objects are masked from 'package:dplyr':
## 
##     first, last
round(stat.desc(podatki[c(-1, -10, -11)]), 2)
##                 Teža  Višina    Tlak   Utrip Hemoglobin Hematokrit Holesterol
## nbr.val        35.00   35.00   35.00   35.00      35.00      35.00      35.00
## nbr.null        0.00    0.00    0.00    0.00       0.00       0.00       0.00
## nbr.na          0.00    0.00    0.00    0.00       0.00       0.00       0.00
## min            55.00  166.00   90.00   49.00     143.00      45.00       3.40
## max            81.00  189.00  135.00   64.00     183.00      69.00       8.00
## range          26.00   23.00   45.00   15.00      40.00      24.00       4.60
## sum          2375.00 6193.50 3838.00 1967.00    5445.00    1801.00     167.60
## median         68.00  177.00  108.00   55.00     157.00      51.00       4.70
## mean           67.86  176.96  109.66   56.20     155.57      51.46       4.79
## SE.mean         1.30    0.99    1.79    0.67       1.45       0.82       0.17
## CI.mean.0.95    2.64    2.01    3.64    1.37       2.94       1.66       0.34
## var            59.01   34.24  112.47   15.81      73.13      23.49       1.00
## std.dev         7.68    5.85   10.61    3.98       8.55       4.85       1.00
## coef.var        0.11    0.03    0.10    0.07       0.05       0.09       0.21
##              Glukoza
## nbr.val        35.00
## nbr.null        0.00
## nbr.na          0.00
## min             3.80
## max             7.20
## range           3.40
## sum           178.65
## median          4.80
## mean            5.10
## SE.mean         0.18
## CI.mean.0.95    0.36
## var             1.12
## std.dev         1.06
## coef.var        0.21
library(ggplot2)
## 
## Attaching package: 'ggplot2'
## The following objects are masked from 'package:psych':
## 
##     %+%, alpha
ggplot(podatki, aes(x = Hematokrit)) + 
  geom_histogram(binwidth = 5, colour = "gray") +
  ylab("Frekvenca")

#install.packages("ggplot2")
library(ggplot2)
ggplot(podatki, aes(x=Spol_factor, y=Glukoza)) +
  geom_boxplot()

ylab("Spol") +
  scale_x_continuous(breaks = seq(0, 10, 1), limits = c(0, 10)) 
## NULL