knitr::opts_chunk$set(
    echo = TRUE,
    message = FALSE,
    warning = FALSE
)

Práca s údajmi

Tradičná práca s databázou

Príklad

# Working with data frames

  Meno = c("Peter", "Fero", "Jano")
  Vek = c(14, 18, 15)
  Body = c(75, 62, 90)
udaje <- data.frame(Meno,Vek,Body)
print(udaje)
print(udaje$Vek)                 # takto adresujeme jednotlivé premenné v data.frame
[1] 14 18 15
print(mean(udaje$Vek))           # priemerny vek
[1] 15.66667
print(udaje[Meno=="Peter",])     # adresovanie celého riadku
print(udaje[3,])                 # ina moznost adresovania celeho riadku
print(udaje[,2:3])               # vypisanie druheho a tretieho stlpca tabulky
print(udaje[1,1])                # vypisanie jednej bunky tabulky
[1] "Peter"
summary(udaje)                   # zakladna deskriptivna statistika celej tabulky
     Meno                Vek             Body      
 Length:3           Min.   :14.00   Min.   :62.00  
 Class :character   1st Qu.:14.50   1st Qu.:68.50  
 Mode  :character   Median :15.00   Median :75.00  
                    Mean   :15.67   Mean   :75.67  
                    3rd Qu.:16.50   3rd Qu.:82.50  
                    Max.   :18.00   Max.   :90.00  
MaBicykel <- c(TRUE,TRUE,FALSE)
udaje <- cbind(udaje,MaBicykel)
print(udaje)
# New record (must match column order/types)
novy.riadok <- data.frame(Meno = "Martin", Vek = 17, Body = 52,MaBicykel = FALSE)

# Append
udaje <- rbind(udaje, novy.riadok)
print(udaje)
novy.riadok <- data.frame(Meno = "Izidor", Vek = 16, Body = 95,MaBicykel = TRUE)


udaje <- rbind(udaje, novy.riadok)
print(udaje)
Športuje <- c(FALSE,FALSE,TRUE,TRUE,FALSE)
udaje <- cbind(udaje,Športuje)
print(udaje)
LS0tCnRpdGxlOiAiUHLDoWNhIHMgZGF0YWLDoXpvdSIKYXV0aG9yOiAiSWdvciBOw6ltZXRoIgpkYXRlOiAiT2t0w7NiZXIgMjAyNSIKb3V0cHV0OiAKICBodG1sX25vdGVib29rOgogICAgdG9jOiB0cnVlCiAgICB0b2NfZmxvYXQ6IHRydWUKICAgIHRoZW1lOiB1bml0ZWQKICAgIGhpZ2hsaWdodDogdGFuZ28KZWRpdG9yX29wdGlvbnM6IAogIG1hcmtkb3duOiAKICAgIHdyYXA6IDcyCi0tLQoKYGBge3J9CmtuaXRyOjpvcHRzX2NodW5rJHNldCgKICAgIGVjaG8gPSBUUlVFLAogICAgbWVzc2FnZSA9IEZBTFNFLAogICAgd2FybmluZyA9IEZBTFNFCikKYGBgCgojIFByw6FjYSBzIMO6ZGFqbWkKCiMjIFRyYWRpxI1uw6EgcHLDoWNhIHMgZGF0YWLDoXpvdQoKIyMjIFByw61rbGFkCgpgYGB7cn0KIyBXb3JraW5nIHdpdGggZGF0YSBmcmFtZXMKCiAgTWVubyA9IGMoIlBldGVyIiwgIkZlcm8iLCAiSmFubyIpCiAgVmVrID0gYygxNCwgMTgsIDE1KQogIEJvZHkgPSBjKDc1LCA2MiwgOTApCmBgYAoKYGBge3J9CnVkYWplIDwtIGRhdGEuZnJhbWUoTWVubyxWZWssQm9keSkKcHJpbnQodWRhamUpCmBgYAoKCmBgYHtyfQpwcmludCh1ZGFqZSRWZWspICAgICAgICAgICAgICAgICAjIHRha3RvIGFkcmVzdWplbWUgamVkbm90bGl2w6kgcHJlbWVubsOpIHYgZGF0YS5mcmFtZQpwcmludChtZWFuKHVkYWplJFZlaykpICAgICAgICAgICAjIHByaWVtZXJueSB2ZWsKcHJpbnQodWRhamVbTWVubz09IlBldGVyIixdKSAgICAgIyBhZHJlc292YW5pZSBjZWzDqWhvIHJpYWRrdQpwcmludCh1ZGFqZVszLF0pICAgICAgICAgICAgICAgICAjIGluYSBtb3pub3N0IGFkcmVzb3ZhbmlhIGNlbGVobyByaWFka3UKcHJpbnQodWRhamVbLDI6M10pICAgICAgICAgICAgICAgIyB2eXBpc2FuaWUgZHJ1aGVobyBhIHRyZXRpZWhvIHN0bHBjYSB0YWJ1bGt5CnByaW50KHVkYWplWzEsMV0pICAgICAgICAgICAgICAgICMgdnlwaXNhbmllIGplZG5laiBidW5reSB0YWJ1bGt5CnN1bW1hcnkodWRhamUpICAgICAgICAgICAgICAgICAgICMgemFrbGFkbmEgZGVza3JpcHRpdm5hIHN0YXRpc3Rpa2EgY2VsZWogdGFidWxreQpgYGAKCgoKYGBge3J9Ck1hQmljeWtlbCA8LSBjKFRSVUUsVFJVRSxGQUxTRSkKdWRhamUgPC0gY2JpbmQodWRhamUsTWFCaWN5a2VsKQpwcmludCh1ZGFqZSkKYGBgCgoKCmBgYHtyfQojIE5ldyByZWNvcmQgKG11c3QgbWF0Y2ggY29sdW1uIG9yZGVyL3R5cGVzKQpub3Z5LnJpYWRvayA8LSBkYXRhLmZyYW1lKE1lbm8gPSAiTWFydGluIiwgVmVrID0gMTcsIEJvZHkgPSA1MixNYUJpY3lrZWwgPSBGQUxTRSkKCiMgQXBwZW5kCnVkYWplIDwtIHJiaW5kKHVkYWplLCBub3Z5LnJpYWRvaykKcHJpbnQodWRhamUpCmBgYApgYGB7cn0Kbm92eS5yaWFkb2sgPC0gZGF0YS5mcmFtZShNZW5vID0gIkl6aWRvciIsIFZlayA9IDE2LCBCb2R5ID0gOTUsTWFCaWN5a2VsID0gVFJVRSkKCgp1ZGFqZSA8LSByYmluZCh1ZGFqZSwgbm92eS5yaWFkb2spCnByaW50KHVkYWplKQpgYGAKYGBge3J9CsWgcG9ydHVqZSA8LSBjKEZBTFNFLEZBTFNFLFRSVUUsVFJVRSxGQUxTRSkKdWRhamUgPC0gY2JpbmQodWRhamUsxaBwb3J0dWplKQpwcmludCh1ZGFqZSkKYGBgCg==