podatki <- data.frame("ID"=c(1,2,3,4,5),
"visina"=c(170,172,168,180,184),
"starost"=c(20,22,22,23,24),
"spol"=c("z","z","m","m","m"))
mean(podatki$visina)
## [1] 174.8
summary(podatki[ , c(-1,-4) ])
## visina starost
## Min. :168.0 Min. :20.0
## 1st Qu.:170.0 1st Qu.:22.0
## Median :172.0 Median :22.0
## Mean :174.8 Mean :22.2
## 3rd Qu.:180.0 3rd Qu.:23.0
## Max. :184.0 Max. :24.0
podatki$teza <- c(65,60,70,72,80)
Izračunaj BMI
podatki$BMI <- (podatki$teza / (podatki$visina/100)^2)
#install.packages("pastecs")
library(pastecs)
round(stat.desc(podatki), 3)
## ID visina starost spol teza BMI
## nbr.val 5.000 5.000 5.000 NA 5.000 5.000
## nbr.null 0.000 0.000 0.000 NA 0.000 0.000
## nbr.na 0.000 0.000 0.000 NA 0.000 0.000
## min 1.000 168.000 20.000 NA 60.000 20.281
## max 5.000 184.000 24.000 NA 80.000 24.802
## range 4.000 16.000 4.000 NA 20.000 4.520
## sum 15.000 874.000 111.000 NA 347.000 113.426
## median 3.000 172.000 22.000 NA 70.000 22.491
## mean 3.000 174.800 22.200 NA 69.400 22.685
## SE.mean 0.707 3.072 0.663 NA 3.370 0.755
## CI.mean.0.95 1.963 8.531 1.842 NA 9.358 2.096
## var 2.500 47.200 2.200 NA 56.800 2.850
## std.dev 1.581 6.870 1.483 NA 7.537 1.688
## coef.var 0.527 0.039 0.067 NA 0.109 0.074
#install.packages("psych")
library(psych)
describe(podatki$visina)
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 5 174.8 6.87 172 174.8 5.93 168 184 16 0.29 -2.05 3.07