Data Exploration

Exercises ~ Week 3

Logo


1 Exercise 1

The following table shows sample information for three students. Each observation represents a single student and includes details such as their unique student ID, name, age, total credits completed, major field of study, and year level.

This dataset demonstrates a mixture of variable types:

  • Nominal: StudentID, Name, Major
  • Numeric: Age (continuous), CreditsCompleted (discrete)
  • Ordinal: YearLevel (Freshman → Senior)
StudentID Name Age CreditsCompleted Major YearLevel
S001 Alice 20 45 Data Sains Sophomore
S002 Budi 21 60 Mathematics Junior
S003 Citra 19 30 Statistics Freshman
# 1. Create vectors for each variable
StudentID <- c("S001", "S002", "S003")       # Nominal / ID
Name <- c("Alice", "Budi", "Citra")          # Nominal / Name
Age <- c(20, 21, 19)                         # Numeric / Continuous
CreditsCompleted <- c(45, 60, 30)            # Numeric / Discrete

# Nominal
Major <- c("Data Sains", "Mathematics", "Statistics")  

# Ordinal
YearLevel <- factor(c("Sophomore", "Junior", "Freshman"),
                    levels = c("Freshman","Sophomore","Junior","Senior"),
                    ordered = TRUE)          

# 2. Combine all vectors into a data frame
students <- data.frame(
  StudentID, Name, Age, CreditsCompleted, Major, YearLevel,
  stringsAsFactors = FALSE
)

# 3. Display the data frame
print(students)
##   StudentID  Name Age CreditsCompleted       Major YearLevel
## 1      S001 Alice  20               45  Data Sains Sophomore
## 2      S002  Budi  21               60 Mathematics    Junior
## 3      S003 Citra  19               30  Statistics  Freshman

2 Exercise 2

Identify Data Types: Determine the type of data for each of the following variables:

# Install knitr package if not already installed
# install.packages("knitr")
library(knitr)

# Create a data frame for Data Types
variables_info <- data.frame(
  No = 1:5,
  Variable = c(
    "Number of vehicles passing through the toll road each day",
    "Student height in cm",
    "Employee gender (Male / Female)",
    "Customer satisfaction level: Low, Medium, High",
    "Respondent's favorite color: Red, Blue, Green"
  ),
  DataType = c(
    "Numerics",
    "Numerics",
    "Catagorical",
    "Catagorical",
    "Catagorical"
  ),
  Subtype = c(
    "Discreate",
    "Continuous",
    "Nominal",
    "Ordinal",
    "Nominal"
  ),
  stringsAsFactors = FALSE
)

# Display the data frame as a neat table
kable(variables_info, 
      caption = "Table of Variables and Data Types")
Table of Variables and Data Types
No Variable DataType Subtype
1 Number of vehicles passing through the toll road each day Numerics Discreate
2 Student height in cm Numerics Continuous
3 Employee gender (Male / Female) Catagorical Nominal
4 Customer satisfaction level: Low, Medium, High Catagorical Ordinal
5 Respondent’s favorite color: Red, Blue, Green Catagorical Nominal

3 Exercise 3

Classify Data Sources: Determine whether the following data comes from internal or external sources, and whether it is structured or unstructured:

# Install DT package if not already installed
# install.packages("DT")
library(DT)

# Create a data frame for data sources 
data_sources <- data.frame(
  No = 1:4,
  DataSource = c(
    "Daily sales transaction data of the company",
    "Weather reports from BMKG",
    "Product reviews on social media",
    "Warehouse inventory reports"
  ),
  Internal_External = c(
    "Internal",
    "External",
    "External",
    "Internal"
  ),
  Structured_Unstructured = c(
    "Structured",
    "Structured",
    "Unstructured",
    "Structured"
  ),
  stringsAsFactors = FALSE
)

# Display the data frame as a neat table
datatable(data_sources, 
          caption = "Table of Data Sources",
          rownames = FALSE) # hides the index column

4 Exercise 4

Dataset Structure: Consider the following transaction table:

Date Qty Price Product CustomerTier
2025-10-01 2 1000 Laptop High
2025-10-01 5 20 Mouse Medium
2025-10-02 1 1000 Laptop Low
2025-10-02 3 30 Keyboard Medium
2025-10-03 4 50 Mouse Medium
2025-10-03 2 1000 Laptop High
2025-10-04 6 25 Keyboard Low
2025-10-04 1 1000 Laptop High
2025-10-05 3 40 Mouse Low
2025-10-05 5 10 Keyboard Medium

Your Assignment Instructions: Creating a Transactions Table above in R

  1. Create a data frame in R called transactions containing the data above.

  2. Identify which variables are numeric and which are categorical

  3. Calculate total revenue for each transaction by multiplying Qty × Price and add it as a new column Total.

  4. Compute summary statistics:

    • Total quantity sold for each product
    • Total revenue per product
    • Average price per product
  5. Visualize the data:

    • Create a barplot showing total quantity sold per product.
    • Create a pie chart showing the proportion of total revenue per customer tier.
  6. Optional Challenge:

    • Find which date had the highest total revenue.
    • Create a stacked bar chart showing quantity sold per product by customer tier.

Hints: Use data.frame(), aggregate(), barplot(), pie(), and basic arithmetic operations in R.

4.1 Data Variable

Data Frame

library(knitr)
library(reshape2)

#Data Frame

Date = as.Date(c("2025-10-01", "2025-10-01", "2025-10-02", "2025-10-02",
    "2025-10-03", "2025-10-03", "2025-10-04", "2025-10-04",
    "2025-10-05", "2025-10-05"))
  Qty = c(2,5,1,3,4,2,6,1,3,5)
  Price = c(1000, 20, 1000, 30, 50, 1000, 25, 1000, 40, 10)
  Product = c("Laptop", "Mouse", "Laptop", "Keyboard", "Mouse",
              "Laptop", "Keyboard", "Laptop", "Mouse", "Keyboard")
  CostumerTier = c("High", "Medium", "Low", "Medium", "Medium",
                   "High", "Low", "High", "Low", "Medium")
  
  #transactions data frame
transactions <- data.frame(Date, Qty, Price, 
                           Product, CostumerTier)
kable(transactions,
      caption="Data Frame")
Data Frame
Date Qty Price Product CostumerTier
2025-10-01 2 1000 Laptop High
2025-10-01 5 20 Mouse Medium
2025-10-02 1 1000 Laptop Low
2025-10-02 3 30 Keyboard Medium
2025-10-03 4 50 Mouse Medium
2025-10-03 2 1000 Laptop High
2025-10-04 6 25 Keyboard Low
2025-10-04 1 1000 Laptop High
2025-10-05 3 40 Mouse Low
2025-10-05 5 10 Keyboard Medium

Data Numeric Numeric or quantitative data are data expressed in numbers that represent counts or measurements. They provide information about how much or how many of something, allowing for mathematical operations such as addition, subtraction, averaging, and statistical analysis.

#Category and Numeric
Numeric <- data.frame(
  Qty, Price,
  stringsAsFactors = FALSE
 ) 


kable(Numeric,
      caption = "Data Numeric")
Data Numeric
Qty Price
2 1000
5 20
1 1000
3 30
4 50
2 1000
6 25
1 1000
3 40
5 10

Data Category Categorical or qualitative data are data expressed in labels, names, or categories rather than numbers. They describe qualities, attributes, or classifications that cannot be meaningfully measured with arithmetic operations like addition or subtraction.

Category <- data.frame(Date, Product, CostumerTier)


kable(Category,
      caption = "Data Category")
Data Category
Date Product CostumerTier
2025-10-01 Laptop High
2025-10-01 Mouse Medium
2025-10-02 Laptop Low
2025-10-02 Keyboard Medium
2025-10-03 Mouse Medium
2025-10-03 Laptop High
2025-10-04 Keyboard Low
2025-10-04 Laptop High
2025-10-05 Mouse Low
2025-10-05 Keyboard Medium

Total Data Transaction

transactions$Total <- transactions$Qty * transactions$Price        
kable(transactions)
Date Qty Price Product CostumerTier Total
2025-10-01 2 1000 Laptop High 2000
2025-10-01 5 20 Mouse Medium 100
2025-10-02 1 1000 Laptop Low 1000
2025-10-02 3 30 Keyboard Medium 90
2025-10-03 4 50 Mouse Medium 200
2025-10-03 2 1000 Laptop High 2000
2025-10-04 6 25 Keyboard Low 150
2025-10-04 1 1000 Laptop High 1000
2025-10-05 3 40 Mouse Low 120
2025-10-05 5 10 Keyboard Medium 50
#Total quantity sold for each product
total_qty <- aggregate(Qty ~ Product, data = transactions, sum)

# Total revenue per product
total_revenue <- aggregate(Total ~ Product, data = transactions, sum)

# Average price per product
avg_price <- aggregate(Price ~ Product, data = transactions, mean)


kable(total_qty,
      caption = "Total Quantity")
Total Quantity
Product Qty
Keyboard 14
Laptop 6
Mouse 12
kable(total_revenue,
      caption = "Total Revenue")
Total Revenue
Product Total
Keyboard 290
Laptop 6000
Mouse 420
kable(avg_price,
      caption = "Average Price")
Average Price
Product Price
Keyboard 21.66667
Laptop 1000.00000
Mouse 36.66667
barplot(total_qty$Qty,
        names.arg = total_qty$Qty,
        main = "Total Quantity Sold per Product",
        col = "navy",
        xlab = "Product",
        ylab = "total_qty",)

___

# Pie chart total revenue per customer tier and percentage

revenue_tier <- aggregate(Total ~ CostumerTier, data = transactions, sum)

revenue_tier$Percent <- round(100 * revenue_tier$Total / sum(revenue_tier$Total), 1)

labels <- paste(revenue_tier$CostumerTier, "-", revenue_tier$Percent, "%")

pie(revenue_tier$Total,
    labels = labels,
    main = "Total revenue pie chart per CostumerTier (%)",
    col = c("lightblue", "lightgreen", "pink"),
    xlab = "Costumer",
    ylab = "total_revenue")

Date Highest Total Revenue

revenue_date <- aggregate(Total ~ Date, data = transactions, sum)
revenue_date[which.max(revenue_date$Total),]
# Stacked bar chart: quantity sold per product by customer tier

qty_tier <- aggregate(Qty ~ Product + CostumerTier, data = transactions, sum)
qty_wide <- dcast(qty_tier, Product ~ CostumerTier, value.var = "Qty", fill = 0)
barplot(
  as.matrix(qty_wide[, -1]),
  beside = TRUE,
  legend = colnames(qty_wide)[-1],
  col = rainbow(ncol(qty_wide) - 1),
  main = "Quantity Sold per Product by Customer Tier",
  xlab = "Product",
  ylab = "Quantity",
  names.arg = qty_wide$Product
)

5 Exercise 5

Create Your Own Data Frame:

Objective: Create a data frame in R with 30 rows containing a mix of data types: continuous, discrete, nominal, and ordinal.

5.1 Instructions

  1. Open RStudio or the R console.

  2. Create a vector for each column in your data frame:

    • Date: 30 dates (can be sequential or random within a month/year)
    • Continuous: numeric values that can take decimal values (e.g., height, weight, temperature)
    • Discrete: numeric values that can only take whole numbers (e.g., number of items, number of vehicles)
    • Nominal: categorical values with no order (e.g., color, gender, city)
    • Ordinal: categorical values with a defined order (e.g., Low, Medium, High; Beginner, Intermediate, Expert)
  3. Combine all vectors into a data frame called my_data.

  4. Check your data frame using head() or View() to ensure it has 30 rows and the columns are correct.

  5. Optional tasks:

    • Summarize each column using summary()
    • Count the frequency of each category for Nominal and Ordinal columns using table()

5.2 Hints

  • Use seq.Date() or as.Date() to generate the Date column.
  • Use runif() or rnorm() for continuous numeric data.
  • Use sample() for discrete, nominal, and ordinal data.
  • Ensure the ordinal vector is created with factor(..., levels = c("Low","Medium","High"), ordered = TRUE) (or similar).
#Excercise 5: Data Penggunaan KRL selama bulan September
library(knitr)
library(DT)

# Data simulasi
Tanggal <- seq.Date(from = as.Date("2025-09-01"), to = as.Date("2025-09-30"), by = "day")
Jumlah_Penumpang <- sample(4800:5500, 30, replace = TRUE)
Waktu_Tunggu <- round(runif(30, min = 6.0, max = 8.5), 1)
Jenis_Jalur <- sample(c("Merah", "Hijau", "Biru", "Kuning"), 30, replace = TRUE)

Tingkat_Kepadatan <- factor(
  sample(c("Rendah", "Sedang", "Tinggi", "Sangat Tinggi"), 30, replace = TRUE),
  levels = c("Rendah", "Sedang", "Tinggi", "Sangat Tinggi"),
  ordered = TRUE
)

#Data Frame
my_data <- data.frame(
  Tanggal,
  Jumlah_Penumpang,
  Waktu_Tunggu,
  Jenis_Jalur,
  Tingkat_Kepadatan,
  stringsAsFactors = FALSE
)

#Interactive table and color
datatable(
  my_data,
  caption = htmltools::tags$caption(
    style = 'caption-side: top; text-align: center; font-weight: bold; font-size: 16px; color: #2C3E50;',
    'Tabel 1. Data Simulasi Penggunaan KRL Selama Bulan September'
  ),
  options = list(
    pageLength = 10,
    autoWidth = TRUE,
    dom = 'Bfrtip',
    buttons = c('copy', 'csv', 'excel', 'pdf', 'print'),
    initComplete = JS(
      "function(settings, json) {",
      "$(this.api().table().header()).css({'background-color': '#2C3E50', 'color': '#fff'});",
      "}"
    )
  ),
  rownames = FALSE,
  class = 'cell-border stripe hover compact'
) %>%
  formatStyle(
    'Jenis_Jalur',
    backgroundColor = styleEqual(
      c("Merah", "Hijau", "Biru", "Kuning"),
      c("#FF6B6B", "#6BCB77", "#4D96FF", "#FFD93D")
    ),
    color = "black",
    fontWeight = "bold"
  ) %>%
  formatStyle(
    'Tingkat_Kepadatan',
    backgroundColor = styleEqual(
      c("Rendah", "Sedang", "Tinggi", "Sangat Tinggi"),
      c("#DFFFD6", "#FFF3B0", "#FFD6A5", "#FFB5A7")
    ),
    color = "black",
    fontWeight = "bold"
  )

SUMMARY

my_data_summary <- summary(my_data)
kable(my_data_summary)
Tanggal Jumlah_Penumpang Waktu_Tunggu Jenis_Jalur Tingkat_Kepadatan
Min. :2025-09-01 Min. :4831 Min. :6.200 Length:30 Rendah :11
1st Qu.:2025-09-08 1st Qu.:4940 1st Qu.:7.025 Class :character Sedang : 3
Median :2025-09-15 Median :5120 Median :7.250 Mode :character Tinggi : 8
Mean :2025-09-15 Mean :5138 Mean :7.350 NA Sangat Tinggi: 8
3rd Qu.:2025-09-22 3rd Qu.:5321 3rd Qu.:7.850 NA NA
Max. :2025-09-30 Max. :5488 Max. :8.500 NA NA

JENIS JALUR (NOMINAL)

table(my_data$Jenis_Jalur)
## 
##   Biru  Hijau Kuning  Merah 
##      6      5      8     11

TINGKAT KEPADATAN (ORDINAL)

table(my_data$Tingkat_Kepadatan)
## 
##        Rendah        Sedang        Tinggi Sangat Tinggi 
##            11             3             8             8
LS0tDQp0aXRsZTogIkRhdGEgRXhwbG9yYXRpb24iICAgICAgICMgTWFpbiB0aXRsZSBvZiB0aGUgZG9jdW1lbnQNCnN1YnRpdGxlOiAiRXhlcmNpc2VzIH4gV2VlayAzIiAgIyBTdWJ0aXRsZSBvciB0b3BpYyBmb3Igd2VlayAyDQphdXRob3I6IA0KLSAiQXJ5YSBGaGFyZXppIg0KLSAiQ2hyaXN0aWFuIE1pY2hhZWwgSnVsaWFubyINCi0gIkRoZWZpbyBBbGltIE11emFra2kiDQotICJGcmVua2h5IFRvbmdhIFJldGFuZyINCi0gIk0gWXVzdGlhbiBQdXRyYSBNdWhhZGkiDQotICJZb3NlZiBUZW9mYW5pIFRhbWJhIg0KDQojIFJlcGxhY2Ugd2l0aCB5b3VyIGZ1bGwgbmFtZQ0KZGF0ZTogICJgciBmb3JtYXQoU3lzLkRhdGUoKSwgJyVCICVkLCAlWScpYCIgIyBBdXRvIGRpc3BsYXlzIHRoZSBjdXJyZW50IGRhdGUNCm91dHB1dDogICAgICAgICAgICAgICAgICAgICAgICAgIyBPdXRwdXQgc2VjdGlvbiBkZWZpbmVzIHRoZSBmb3JtYXQgYW5kIGxheW91dCANCiAgcm1kZm9ybWF0czo6cmVhZHRoZWRvd246ICAgICAgIyBodHRwczovL2dpdGh1Yi5jb20vanViYS9ybWRmb3JtYXRzDQogICAgc2VsZl9jb250YWluZWQ6IHRydWUgICAgICAgICMgRW1iZWRzIGFsbCByZXNvdXJjZXMgKENTUywgSlMsIGltYWdlcykgDQogICAgdGh1bWJuYWlsczogdHJ1ZSAgICAgICAgICAgICMgRGlzcGxheXMgaW1hZ2UgdGh1bWJuYWlscyBpbiB0aGUgZG9jDQogICAgbGlnaHRib3g6IHRydWUgICAgICAgICAgICAgICMgRW5hYmxlcyBjbGljayB0byBlbmxhcmdlIGltYWdlcw0KICAgIGdhbGxlcnk6IHRydWUgICAgICAgICAgICAgICAjIEdyb3VwcyBpbWFnZXMgaW50byBhbiBpbnRlcmFjdGl2ZSBnYWxsZXJ5DQogICAgbnVtYmVyX3NlY3Rpb25zOiB0cnVlICAgICAgICMgQXV0b21hdGljYWxseSBudW1iZXJzIGFsbCBzZWN0aW9ucw0KICAgIGxpYl9kaXI6IGxpYnMgICAgICAgICAgICAgICAjIERpcmVjdG9yeSB3aGVyZSBKYXZhU2NyaXB0L0NTUyBsaWJyYXJpZXMNCiAgICBkZl9wcmludDogInBhZ2VkIiAgICAgICAgICAgIyBEaXNwbGF5cyBkYXRhIGZyYW1lcyBhcyBpbnRlcmFjdGl2ZSBwYWdlZCANCiAgICBjb2RlX2ZvbGRpbmc6ICJzaG93IiAgICAgICAgIyBBbGxvd3MgZm9sZGluZy91bmZvbGRpbmcgUiBjb2RlIGJsb2NrcyAoc2hvdykNCiAgICBjb2RlX2Rvd25sb2FkOiB5ZXMgICAgICAgICAgICMgQWRkcyBhIGJ1dHRvbiB0byBkb3dubG9hZCBhbGwgUiBjb2RlICh5ZXMpDQotLS0NCg0KPGltZyBpZD0iRm90byIgc3JjPSJGb3RvS2Vsb21wb2suanBlZz9yYXc9dHJ1ZSIgYWx0PSJMb2dvIiBzdHlsZT0id2lkdGg6MjAwcHg7IGRpc3BsYXk6IGJsb2NrOyBtYXJnaW46IGF1dG87Ij4gDQoNCi0tLQ0KDQojIyBFeGVyY2lzZSAxDQoNClRoZSBmb2xsb3dpbmcgdGFibGUgc2hvd3Mgc2FtcGxlIGluZm9ybWF0aW9uIGZvciB0aHJlZSBzdHVkZW50cy4gRWFjaCBvYnNlcnZhdGlvbiByZXByZXNlbnRzIGEgc2luZ2xlIHN0dWRlbnQgYW5kIGluY2x1ZGVzIGRldGFpbHMgc3VjaCBhcyB0aGVpciB1bmlxdWUgc3R1ZGVudCBJRCwgbmFtZSwgYWdlLCB0b3RhbCBjcmVkaXRzIGNvbXBsZXRlZCwgbWFqb3IgZmllbGQgb2Ygc3R1ZHksIGFuZCB5ZWFyIGxldmVsLiAgDQoNClRoaXMgZGF0YXNldCBkZW1vbnN0cmF0ZXMgYSBtaXh0dXJlIG9mIHZhcmlhYmxlIHR5cGVzOiAgDQoNCi0gKipOb21pbmFsOioqIFN0dWRlbnRJRCwgTmFtZSwgTWFqb3IgIA0KLSAqKk51bWVyaWM6KiogQWdlIChjb250aW51b3VzKSwgQ3JlZGl0c0NvbXBsZXRlZCAoZGlzY3JldGUpICANCi0gKipPcmRpbmFsOioqIFllYXJMZXZlbCAoRnJlc2htYW4g4oaSIFNlbmlvcikgIA0KDQp8IFN0dWRlbnRJRCB8IE5hbWUgICB8IEFnZSB8IENyZWRpdHNDb21wbGV0ZWQgfCBNYWpvciAgICAgICAgICAgIHwgWWVhckxldmVsIHwNCnwtLS0tLS0tLS0tLXwtLS0tLS0tLXwtLS0tLXwtLS0tLS0tLS0tLS0tLS0tLXwtLS0tLS0tLS0tLS0tLS0tLXwtLS0tLS0tLS0tLXwNCnwgUzAwMSAgICAgIHwgQWxpY2UgIHwgMjAgIHwgNDUgICAgICAgICAgICAgIHwgRGF0YSBTYWlucyAgICAgIHwgU29waG9tb3JlIHwNCnwgUzAwMiAgICAgIHwgQnVkaSAgIHwgMjEgIHwgNjAgICAgICAgICAgICAgIHwgTWF0aGVtYXRpY3MgICAgIHwgSnVuaW9yICAgIHwNCnwgUzAwMyAgICAgIHwgQ2l0cmEgIHwgMTkgIHwgMzAgICAgICAgICAgICAgIHwgU3RhdGlzdGljcyAgICAgIHwgRnJlc2htYW4gIHwNCg0KYGBge3J9DQojIDEuIENyZWF0ZSB2ZWN0b3JzIGZvciBlYWNoIHZhcmlhYmxlDQpTdHVkZW50SUQgPC0gYygiUzAwMSIsICJTMDAyIiwgIlMwMDMiKSAgICAgICAjIE5vbWluYWwgLyBJRA0KTmFtZSA8LSBjKCJBbGljZSIsICJCdWRpIiwgIkNpdHJhIikgICAgICAgICAgIyBOb21pbmFsIC8gTmFtZQ0KQWdlIDwtIGMoMjAsIDIxLCAxOSkgICAgICAgICAgICAgICAgICAgICAgICAgIyBOdW1lcmljIC8gQ29udGludW91cw0KQ3JlZGl0c0NvbXBsZXRlZCA8LSBjKDQ1LCA2MCwgMzApICAgICAgICAgICAgIyBOdW1lcmljIC8gRGlzY3JldGUNCg0KIyBOb21pbmFsDQpNYWpvciA8LSBjKCJEYXRhIFNhaW5zIiwgIk1hdGhlbWF0aWNzIiwgIlN0YXRpc3RpY3MiKSAgDQoNCiMgT3JkaW5hbA0KWWVhckxldmVsIDwtIGZhY3RvcihjKCJTb3Bob21vcmUiLCAiSnVuaW9yIiwgIkZyZXNobWFuIiksDQogICAgICAgICAgICAgICAgICAgIGxldmVscyA9IGMoIkZyZXNobWFuIiwiU29waG9tb3JlIiwiSnVuaW9yIiwiU2VuaW9yIiksDQogICAgICAgICAgICAgICAgICAgIG9yZGVyZWQgPSBUUlVFKSAgICAgICAgICANCg0KIyAyLiBDb21iaW5lIGFsbCB2ZWN0b3JzIGludG8gYSBkYXRhIGZyYW1lDQpzdHVkZW50cyA8LSBkYXRhLmZyYW1lKA0KICBTdHVkZW50SUQsIE5hbWUsIEFnZSwgQ3JlZGl0c0NvbXBsZXRlZCwgTWFqb3IsIFllYXJMZXZlbCwNCiAgc3RyaW5nc0FzRmFjdG9ycyA9IEZBTFNFDQopDQoNCiMgMy4gRGlzcGxheSB0aGUgZGF0YSBmcmFtZQ0KcHJpbnQoc3R1ZGVudHMpDQpgYGANCg0KDQojIyBFeGVyY2lzZSAyDQoNCioqSWRlbnRpZnkgRGF0YSBUeXBlczoqKiBEZXRlcm1pbmUgdGhlIHR5cGUgb2YgZGF0YSBmb3IgZWFjaCBvZiB0aGUgZm9sbG93aW5nIHZhcmlhYmxlczoNCg0KYGBge3J9DQojIEluc3RhbGwga25pdHIgcGFja2FnZSBpZiBub3QgYWxyZWFkeSBpbnN0YWxsZWQNCiMgaW5zdGFsbC5wYWNrYWdlcygia25pdHIiKQ0KbGlicmFyeShrbml0cikNCg0KIyBDcmVhdGUgYSBkYXRhIGZyYW1lIGZvciBEYXRhIFR5cGVzDQp2YXJpYWJsZXNfaW5mbyA8LSBkYXRhLmZyYW1lKA0KICBObyA9IDE6NSwNCiAgVmFyaWFibGUgPSBjKA0KICAgICJOdW1iZXIgb2YgdmVoaWNsZXMgcGFzc2luZyB0aHJvdWdoIHRoZSB0b2xsIHJvYWQgZWFjaCBkYXkiLA0KICAgICJTdHVkZW50IGhlaWdodCBpbiBjbSIsDQogICAgIkVtcGxveWVlIGdlbmRlciAoTWFsZSAvIEZlbWFsZSkiLA0KICAgICJDdXN0b21lciBzYXRpc2ZhY3Rpb24gbGV2ZWw6IExvdywgTWVkaXVtLCBIaWdoIiwNCiAgICAiUmVzcG9uZGVudCdzIGZhdm9yaXRlIGNvbG9yOiBSZWQsIEJsdWUsIEdyZWVuIg0KICApLA0KICBEYXRhVHlwZSA9IGMoDQogICAgIk51bWVyaWNzIiwNCiAgICAiTnVtZXJpY3MiLA0KICAgICJDYXRhZ29yaWNhbCIsDQogICAgIkNhdGFnb3JpY2FsIiwNCiAgICAiQ2F0YWdvcmljYWwiDQogICksDQogIFN1YnR5cGUgPSBjKA0KICAgICJEaXNjcmVhdGUiLA0KICAgICJDb250aW51b3VzIiwNCiAgICAiTm9taW5hbCIsDQogICAgIk9yZGluYWwiLA0KICAgICJOb21pbmFsIg0KICApLA0KICBzdHJpbmdzQXNGYWN0b3JzID0gRkFMU0UNCikNCg0KIyBEaXNwbGF5IHRoZSBkYXRhIGZyYW1lIGFzIGEgbmVhdCB0YWJsZQ0Ka2FibGUodmFyaWFibGVzX2luZm8sIA0KICAgICAgY2FwdGlvbiA9ICJUYWJsZSBvZiBWYXJpYWJsZXMgYW5kIERhdGEgVHlwZXMiKQ0KYGBgDQotLS0NCg0KIyMgRXhlcmNpc2UgMw0KDQoqKkNsYXNzaWZ5IERhdGEgU291cmNlczoqKiBEZXRlcm1pbmUgd2hldGhlciB0aGUgZm9sbG93aW5nIGRhdGEgY29tZXMgZnJvbSAqKmludGVybmFsKiogb3IgKipleHRlcm5hbCBzb3VyY2VzKiosIGFuZCB3aGV0aGVyIGl0IGlzICoqc3RydWN0dXJlZCoqIG9yICoqdW5zdHJ1Y3R1cmVkKio6DQoNCmBgYHtyfQ0KIyBJbnN0YWxsIERUIHBhY2thZ2UgaWYgbm90IGFscmVhZHkgaW5zdGFsbGVkDQojIGluc3RhbGwucGFja2FnZXMoIkRUIikNCmxpYnJhcnkoRFQpDQoNCiMgQ3JlYXRlIGEgZGF0YSBmcmFtZSBmb3IgZGF0YSBzb3VyY2VzIA0KZGF0YV9zb3VyY2VzIDwtIGRhdGEuZnJhbWUoDQogIE5vID0gMTo0LA0KICBEYXRhU291cmNlID0gYygNCiAgICAiRGFpbHkgc2FsZXMgdHJhbnNhY3Rpb24gZGF0YSBvZiB0aGUgY29tcGFueSIsDQogICAgIldlYXRoZXIgcmVwb3J0cyBmcm9tIEJNS0ciLA0KICAgICJQcm9kdWN0IHJldmlld3Mgb24gc29jaWFsIG1lZGlhIiwNCiAgICAiV2FyZWhvdXNlIGludmVudG9yeSByZXBvcnRzIg0KICApLA0KICBJbnRlcm5hbF9FeHRlcm5hbCA9IGMoDQogICAgIkludGVybmFsIiwNCiAgICAiRXh0ZXJuYWwiLA0KICAgICJFeHRlcm5hbCIsDQogICAgIkludGVybmFsIg0KICApLA0KICBTdHJ1Y3R1cmVkX1Vuc3RydWN0dXJlZCA9IGMoDQogICAgIlN0cnVjdHVyZWQiLA0KICAgICJTdHJ1Y3R1cmVkIiwNCiAgICAiVW5zdHJ1Y3R1cmVkIiwNCiAgICAiU3RydWN0dXJlZCINCiAgKSwNCiAgc3RyaW5nc0FzRmFjdG9ycyA9IEZBTFNFDQopDQoNCiMgRGlzcGxheSB0aGUgZGF0YSBmcmFtZSBhcyBhIG5lYXQgdGFibGUNCmRhdGF0YWJsZShkYXRhX3NvdXJjZXMsIA0KICAgICAgICAgIGNhcHRpb24gPSAiVGFibGUgb2YgRGF0YSBTb3VyY2VzIiwNCiAgICAgICAgICByb3duYW1lcyA9IEZBTFNFKSAjIGhpZGVzIHRoZSBpbmRleCBjb2x1bW4NCmBgYA0KDQotLS0NCg0KIyMgRXhlcmNpc2UgNA0KDQoqKkRhdGFzZXQgU3RydWN0dXJlOioqIENvbnNpZGVyIHRoZSBmb2xsb3dpbmcgdHJhbnNhY3Rpb24gdGFibGU6DQoNCnwgRGF0ZSAgICAgICB8IFF0eSB8IFByaWNlIHwgUHJvZHVjdCAgfCBDdXN0b21lclRpZXIgfA0KfC0tLS0tLS0tLS0tLXwtLS0tLXwtLS0tLS0tfC0tLS0tLS0tLS18LS0tLS0tLS0tLS0tLS18DQp8IDIwMjUtMTAtMDEgfCAyICAgfCAxMDAwICB8IExhcHRvcCAgIHwgSGlnaCAgICAgICAgIHwNCnwgMjAyNS0xMC0wMSB8IDUgICB8IDIwICAgIHwgTW91c2UgICAgfCBNZWRpdW0gICAgICAgfA0KfCAyMDI1LTEwLTAyIHwgMSAgIHwgMTAwMCAgfCBMYXB0b3AgICB8IExvdyAgICAgICAgICB8DQp8IDIwMjUtMTAtMDIgfCAzICAgfCAzMCAgICB8IEtleWJvYXJkIHwgTWVkaXVtICAgICAgIHwNCnwgMjAyNS0xMC0wMyB8IDQgICB8IDUwICAgIHwgTW91c2UgICAgfCBNZWRpdW0gICAgICAgfA0KfCAyMDI1LTEwLTAzIHwgMiAgIHwgMTAwMCAgfCBMYXB0b3AgICB8IEhpZ2ggICAgICAgICB8DQp8IDIwMjUtMTAtMDQgfCA2ICAgfCAyNSAgICB8IEtleWJvYXJkIHwgTG93ICAgICAgICAgIHwNCnwgMjAyNS0xMC0wNCB8IDEgICB8IDEwMDAgIHwgTGFwdG9wICAgfCBIaWdoICAgICAgICAgfA0KfCAyMDI1LTEwLTA1IHwgMyAgIHwgNDAgICAgfCBNb3VzZSAgICB8IExvdyAgICAgICAgICB8DQp8IDIwMjUtMTAtMDUgfCA1ICAgfCAxMCAgICB8IEtleWJvYXJkIHwgTWVkaXVtICAgICAgIHwNCg0KDQoqKllvdXIgQXNzaWdubWVudCBJbnN0cnVjdGlvbnM6KiogQ3JlYXRpbmcgYSBUcmFuc2FjdGlvbnMgVGFibGUgYWJvdmUgaW4gUg0KDQoxLiAqKkNyZWF0ZSBhIGRhdGEgZnJhbWUqKiBpbiBSIGNhbGxlZCBgdHJhbnNhY3Rpb25zYCBjb250YWluaW5nIHRoZSBkYXRhIGFib3ZlLg0KDQoyLiBJZGVudGlmeSB3aGljaCB2YXJpYWJsZXMgYXJlIG51bWVyaWMgYW5kIHdoaWNoIGFyZSBjYXRlZ29yaWNhbA0KDQozLiAqKkNhbGN1bGF0ZSB0b3RhbCByZXZlbnVlKiogZm9yIGVhY2ggdHJhbnNhY3Rpb24gYnkgbXVsdGlwbHlpbmcgYFF0eSDDlyBQcmljZWAgYW5kIGFkZCBpdCBhcyBhIG5ldyBjb2x1bW4gYFRvdGFsYC4NCg0KNC4gKipDb21wdXRlIHN1bW1hcnkgc3RhdGlzdGljcyoqOg0KICAgLSBUb3RhbCBxdWFudGl0eSBzb2xkIGZvciBlYWNoIHByb2R1Y3QNCiAgIC0gVG90YWwgcmV2ZW51ZSBwZXIgcHJvZHVjdA0KICAgLSBBdmVyYWdlIHByaWNlIHBlciBwcm9kdWN0DQoNCjUuICoqVmlzdWFsaXplIHRoZSBkYXRhKio6DQogICAtIENyZWF0ZSBhICoqYmFycGxvdCoqIHNob3dpbmcgdG90YWwgcXVhbnRpdHkgc29sZCBwZXIgcHJvZHVjdC4NCiAgIC0gQ3JlYXRlIGEgKipwaWUgY2hhcnQqKiBzaG93aW5nIHRoZSBwcm9wb3J0aW9uIG9mIHRvdGFsIHJldmVudWUgcGVyIGN1c3RvbWVyIHRpZXIuDQoNCjYuICoqT3B0aW9uYWwgQ2hhbGxlbmdlKio6DQogICAtIEZpbmQgd2hpY2ggKipkYXRlKiogaGFkIHRoZSBoaWdoZXN0IHRvdGFsIHJldmVudWUuDQogICAtIENyZWF0ZSBhICoqc3RhY2tlZCBiYXIgY2hhcnQqKiBzaG93aW5nIHF1YW50aXR5IHNvbGQgcGVyIHByb2R1Y3QgYnkgY3VzdG9tZXIgdGllci4NCg0KKipIaW50czoqKiBVc2UgYGRhdGEuZnJhbWUoKWAsIGBhZ2dyZWdhdGUoKWAsIGBiYXJwbG90KClgLCBgcGllKClgLCBhbmQgYmFzaWMgYXJpdGhtZXRpYyBvcGVyYXRpb25zIGluIFIuDQoNCg0KIyMjIERhdGEgVmFyaWFibGUgDQoqKkRhdGEgRnJhbWUqKg0KYGBge3J9DQpsaWJyYXJ5KGtuaXRyKQ0KbGlicmFyeShyZXNoYXBlMikNCg0KI0RhdGEgRnJhbWUNCg0KRGF0ZSA9IGFzLkRhdGUoYygiMjAyNS0xMC0wMSIsICIyMDI1LTEwLTAxIiwgIjIwMjUtMTAtMDIiLCAiMjAyNS0xMC0wMiIsDQogICAgIjIwMjUtMTAtMDMiLCAiMjAyNS0xMC0wMyIsICIyMDI1LTEwLTA0IiwgIjIwMjUtMTAtMDQiLA0KICAgICIyMDI1LTEwLTA1IiwgIjIwMjUtMTAtMDUiKSkNCiAgUXR5ID0gYygyLDUsMSwzLDQsMiw2LDEsMyw1KQ0KICBQcmljZSA9IGMoMTAwMCwgMjAsIDEwMDAsIDMwLCA1MCwgMTAwMCwgMjUsIDEwMDAsIDQwLCAxMCkNCiAgUHJvZHVjdCA9IGMoIkxhcHRvcCIsICJNb3VzZSIsICJMYXB0b3AiLCAiS2V5Ym9hcmQiLCAiTW91c2UiLA0KICAgICAgICAgICAgICAiTGFwdG9wIiwgIktleWJvYXJkIiwgIkxhcHRvcCIsICJNb3VzZSIsICJLZXlib2FyZCIpDQogIENvc3R1bWVyVGllciA9IGMoIkhpZ2giLCAiTWVkaXVtIiwgIkxvdyIsICJNZWRpdW0iLCAiTWVkaXVtIiwNCiAgICAgICAgICAgICAgICAgICAiSGlnaCIsICJMb3ciLCAiSGlnaCIsICJMb3ciLCAiTWVkaXVtIikNCiAgDQogICN0cmFuc2FjdGlvbnMgZGF0YSBmcmFtZQ0KdHJhbnNhY3Rpb25zIDwtIGRhdGEuZnJhbWUoRGF0ZSwgUXR5LCBQcmljZSwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICBQcm9kdWN0LCBDb3N0dW1lclRpZXIpDQprYWJsZSh0cmFuc2FjdGlvbnMsDQogICAgICBjYXB0aW9uPSJEYXRhIEZyYW1lIikNCmBgYA0KDQoqKkRhdGEgTnVtZXJpYyoqDQpOdW1lcmljIG9yIHF1YW50aXRhdGl2ZSBkYXRhIGFyZSBkYXRhIGV4cHJlc3NlZCBpbiBudW1iZXJzIHRoYXQgcmVwcmVzZW50IGNvdW50cyBvciBtZWFzdXJlbWVudHMuIFRoZXkgcHJvdmlkZSBpbmZvcm1hdGlvbiBhYm91dCBob3cgbXVjaCBvciBob3cgbWFueSBvZiBzb21ldGhpbmcsIGFsbG93aW5nIGZvciBtYXRoZW1hdGljYWwgb3BlcmF0aW9ucyBzdWNoIGFzIGFkZGl0aW9uLCBzdWJ0cmFjdGlvbiwgYXZlcmFnaW5nLCBhbmQgc3RhdGlzdGljYWwgYW5hbHlzaXMuDQpgYGB7cn0NCg0KI0NhdGVnb3J5IGFuZCBOdW1lcmljDQpOdW1lcmljIDwtIGRhdGEuZnJhbWUoDQogIFF0eSwgUHJpY2UsDQogIHN0cmluZ3NBc0ZhY3RvcnMgPSBGQUxTRQ0KICkgDQoNCg0Ka2FibGUoTnVtZXJpYywNCiAgICAgIGNhcHRpb24gPSAiRGF0YSBOdW1lcmljIikNCmBgYA0KDQoNCioqRGF0YSBDYXRlZ29yeSoqDQpDYXRlZ29yaWNhbCBvciBxdWFsaXRhdGl2ZSBkYXRhIGFyZSBkYXRhIGV4cHJlc3NlZCBpbiBsYWJlbHMsIG5hbWVzLCBvciBjYXRlZ29yaWVzIHJhdGhlciB0aGFuIG51bWJlcnMuIFRoZXkgZGVzY3JpYmUgcXVhbGl0aWVzLCBhdHRyaWJ1dGVzLCBvciBjbGFzc2lmaWNhdGlvbnMgdGhhdCBjYW5ub3QgYmUgbWVhbmluZ2Z1bGx5IG1lYXN1cmVkIHdpdGggYXJpdGhtZXRpYyBvcGVyYXRpb25zIGxpa2UgYWRkaXRpb24gb3Igc3VidHJhY3Rpb24uDQpgYGB7cn0NCkNhdGVnb3J5IDwtIGRhdGEuZnJhbWUoRGF0ZSwgUHJvZHVjdCwgQ29zdHVtZXJUaWVyKQ0KDQoNCmthYmxlKENhdGVnb3J5LA0KICAgICAgY2FwdGlvbiA9ICJEYXRhIENhdGVnb3J5IikNCg0KYGBgDQoNCioqVG90YWwgRGF0YSBUcmFuc2FjdGlvbioqDQpgYGB7cn0NCnRyYW5zYWN0aW9ucyRUb3RhbCA8LSB0cmFuc2FjdGlvbnMkUXR5ICogdHJhbnNhY3Rpb25zJFByaWNlICAgICAgICANCmthYmxlKHRyYW5zYWN0aW9ucykNCg0KYGBgDQoNCg0KYGBge3J9DQoNCg0KI1RvdGFsIHF1YW50aXR5IHNvbGQgZm9yIGVhY2ggcHJvZHVjdA0KdG90YWxfcXR5IDwtIGFnZ3JlZ2F0ZShRdHkgfiBQcm9kdWN0LCBkYXRhID0gdHJhbnNhY3Rpb25zLCBzdW0pDQoNCiMgVG90YWwgcmV2ZW51ZSBwZXIgcHJvZHVjdA0KdG90YWxfcmV2ZW51ZSA8LSBhZ2dyZWdhdGUoVG90YWwgfiBQcm9kdWN0LCBkYXRhID0gdHJhbnNhY3Rpb25zLCBzdW0pDQoNCiMgQXZlcmFnZSBwcmljZSBwZXIgcHJvZHVjdA0KYXZnX3ByaWNlIDwtIGFnZ3JlZ2F0ZShQcmljZSB+IFByb2R1Y3QsIGRhdGEgPSB0cmFuc2FjdGlvbnMsIG1lYW4pDQoNCg0Ka2FibGUodG90YWxfcXR5LA0KICAgICAgY2FwdGlvbiA9ICJUb3RhbCBRdWFudGl0eSIpDQoNCmthYmxlKHRvdGFsX3JldmVudWUsDQogICAgICBjYXB0aW9uID0gIlRvdGFsIFJldmVudWUiKQ0KDQprYWJsZShhdmdfcHJpY2UsDQogICAgICBjYXB0aW9uID0gIkF2ZXJhZ2UgUHJpY2UiKQ0KDQpgYGANCg0KYGBge3J9DQpiYXJwbG90KHRvdGFsX3F0eSRRdHksDQogICAgICAgIG5hbWVzLmFyZyA9IHRvdGFsX3F0eSRRdHksDQogICAgICAgIG1haW4gPSAiVG90YWwgUXVhbnRpdHkgU29sZCBwZXIgUHJvZHVjdCIsDQogICAgICAgIGNvbCA9ICJuYXZ5IiwNCiAgICAgICAgeGxhYiA9ICJQcm9kdWN0IiwNCiAgICAgICAgeWxhYiA9ICJ0b3RhbF9xdHkiLCkNCmBgYA0KX19fDQoNCmBgYHtyfQ0KDQojIFBpZSBjaGFydCB0b3RhbCByZXZlbnVlIHBlciBjdXN0b21lciB0aWVyIGFuZCBwZXJjZW50YWdlDQoNCnJldmVudWVfdGllciA8LSBhZ2dyZWdhdGUoVG90YWwgfiBDb3N0dW1lclRpZXIsIGRhdGEgPSB0cmFuc2FjdGlvbnMsIHN1bSkNCg0KcmV2ZW51ZV90aWVyJFBlcmNlbnQgPC0gcm91bmQoMTAwICogcmV2ZW51ZV90aWVyJFRvdGFsIC8gc3VtKHJldmVudWVfdGllciRUb3RhbCksIDEpDQoNCmxhYmVscyA8LSBwYXN0ZShyZXZlbnVlX3RpZXIkQ29zdHVtZXJUaWVyLCAiLSIsIHJldmVudWVfdGllciRQZXJjZW50LCAiJSIpDQoNCnBpZShyZXZlbnVlX3RpZXIkVG90YWwsDQogICAgbGFiZWxzID0gbGFiZWxzLA0KICAgIG1haW4gPSAiVG90YWwgcmV2ZW51ZSBwaWUgY2hhcnQgcGVyIENvc3R1bWVyVGllciAoJSkiLA0KICAgIGNvbCA9IGMoImxpZ2h0Ymx1ZSIsICJsaWdodGdyZWVuIiwgInBpbmsiKSwNCiAgICB4bGFiID0gIkNvc3R1bWVyIiwNCiAgICB5bGFiID0gInRvdGFsX3JldmVudWUiKQ0KYGBgDQoNCioqRGF0ZSBIaWdoZXN0IFRvdGFsIFJldmVudWUqKg0KYGBge3J9DQoNCnJldmVudWVfZGF0ZSA8LSBhZ2dyZWdhdGUoVG90YWwgfiBEYXRlLCBkYXRhID0gdHJhbnNhY3Rpb25zLCBzdW0pDQpyZXZlbnVlX2RhdGVbd2hpY2gubWF4KHJldmVudWVfZGF0ZSRUb3RhbCksXQ0KDQpgYGANCg0KYGBge3J9DQojIFN0YWNrZWQgYmFyIGNoYXJ0OiBxdWFudGl0eSBzb2xkIHBlciBwcm9kdWN0IGJ5IGN1c3RvbWVyIHRpZXINCg0KcXR5X3RpZXIgPC0gYWdncmVnYXRlKFF0eSB+IFByb2R1Y3QgKyBDb3N0dW1lclRpZXIsIGRhdGEgPSB0cmFuc2FjdGlvbnMsIHN1bSkNCnF0eV93aWRlIDwtIGRjYXN0KHF0eV90aWVyLCBQcm9kdWN0IH4gQ29zdHVtZXJUaWVyLCB2YWx1ZS52YXIgPSAiUXR5IiwgZmlsbCA9IDApDQpiYXJwbG90KA0KICBhcy5tYXRyaXgocXR5X3dpZGVbLCAtMV0pLA0KICBiZXNpZGUgPSBUUlVFLA0KICBsZWdlbmQgPSBjb2xuYW1lcyhxdHlfd2lkZSlbLTFdLA0KICBjb2wgPSByYWluYm93KG5jb2wocXR5X3dpZGUpIC0gMSksDQogIG1haW4gPSAiUXVhbnRpdHkgU29sZCBwZXIgUHJvZHVjdCBieSBDdXN0b21lciBUaWVyIiwNCiAgeGxhYiA9ICJQcm9kdWN0IiwNCiAgeWxhYiA9ICJRdWFudGl0eSIsDQogIG5hbWVzLmFyZyA9IHF0eV93aWRlJFByb2R1Y3QNCikNCmBgYA0KDQoNCg0KDQoNCiMjIEV4ZXJjaXNlIDUNCg0KKipDcmVhdGUgWW91ciBPd24gRGF0YSBGcmFtZToqKg0KDQoqKk9iamVjdGl2ZToqKiBDcmVhdGUgYSBkYXRhIGZyYW1lIGluIFIgd2l0aCAqKjMwIHJvd3MqKiBjb250YWluaW5nIGEgbWl4IG9mIGRhdGEgdHlwZXM6IGNvbnRpbnVvdXMsIGRpc2NyZXRlLCBub21pbmFsLCBhbmQgb3JkaW5hbC4gIA0KDQojIyMgSW5zdHJ1Y3Rpb25zDQoNCjEuICoqT3BlbiBSU3R1ZGlvKiogb3IgdGhlIFIgY29uc29sZS4gIA0KDQoyLiAqKkNyZWF0ZSBhIHZlY3RvciBmb3IgZWFjaCBjb2x1bW4qKiBpbiB5b3VyIGRhdGEgZnJhbWU6ICANCg0KICAgLSAqKkRhdGUqKjogMzAgZGF0ZXMgKGNhbiBiZSBzZXF1ZW50aWFsIG9yIHJhbmRvbSB3aXRoaW4gYSBtb250aC95ZWFyKSAgDQogICAtICoqQ29udGludW91cyoqOiBudW1lcmljIHZhbHVlcyB0aGF0IGNhbiB0YWtlIGRlY2ltYWwgdmFsdWVzIChlLmcuLCBoZWlnaHQsIHdlaWdodCwgdGVtcGVyYXR1cmUpICANCiAgIC0gKipEaXNjcmV0ZSoqOiBudW1lcmljIHZhbHVlcyB0aGF0IGNhbiBvbmx5IHRha2Ugd2hvbGUgbnVtYmVycyAoZS5nLiwgbnVtYmVyIG9mIGl0ZW1zLCBudW1iZXIgb2YgdmVoaWNsZXMpICANCiAgIC0gKipOb21pbmFsKio6IGNhdGVnb3JpY2FsIHZhbHVlcyB3aXRoICoqbm8gb3JkZXIqKiAoZS5nLiwgY29sb3IsIGdlbmRlciwgY2l0eSkgIA0KICAgLSAqKk9yZGluYWwqKjogY2F0ZWdvcmljYWwgdmFsdWVzIHdpdGggYSAqKmRlZmluZWQgb3JkZXIqKiAoZS5nLiwgTG93LCBNZWRpdW0sIEhpZ2g7IEJlZ2lubmVyLCBJbnRlcm1lZGlhdGUsIEV4cGVydCkgIA0KDQozLiAqKkNvbWJpbmUgYWxsIHZlY3RvcnMgaW50byBhIGRhdGEgZnJhbWUqKiBjYWxsZWQgYG15X2RhdGFgLiAgDQoNCjQuICoqQ2hlY2sgeW91ciBkYXRhIGZyYW1lKiogdXNpbmcgYGhlYWQoKWAgb3IgYFZpZXcoKWAgdG8gZW5zdXJlIGl0IGhhcyAqKjMwIHJvd3MqKiBhbmQgdGhlIGNvbHVtbnMgYXJlIGNvcnJlY3QuICANCg0KNS4gKipPcHRpb25hbCB0YXNrcyoqOiAgDQogICAtIFN1bW1hcml6ZSBlYWNoIGNvbHVtbiB1c2luZyBgc3VtbWFyeSgpYCAgDQogICAtIENvdW50IHRoZSBmcmVxdWVuY3kgb2YgZWFjaCBjYXRlZ29yeSBmb3IgKipOb21pbmFsKiogYW5kICoqT3JkaW5hbCoqIGNvbHVtbnMgdXNpbmcgYHRhYmxlKClgICANCg0KIyMjIEhpbnRzDQoNCi0gVXNlIGBzZXEuRGF0ZSgpYCBvciBgYXMuRGF0ZSgpYCB0byBnZW5lcmF0ZSB0aGUgRGF0ZSBjb2x1bW4uICANCi0gVXNlIGBydW5pZigpYCBvciBgcm5vcm0oKWAgZm9yIGNvbnRpbnVvdXMgbnVtZXJpYyBkYXRhLiAgDQotIFVzZSBgc2FtcGxlKClgIGZvciBkaXNjcmV0ZSwgbm9taW5hbCwgYW5kIG9yZGluYWwgZGF0YS4gIA0KLSBFbnN1cmUgdGhlICoqb3JkaW5hbCB2ZWN0b3IqKiBpcyBjcmVhdGVkIHdpdGggYGZhY3RvciguLi4sIGxldmVscyA9IGMoIkxvdyIsIk1lZGl1bSIsIkhpZ2giKSwgb3JkZXJlZCA9IFRSVUUpYCAob3Igc2ltaWxhcikuICANCg0KDQpgYGB7cn0NCiNFeGNlcmNpc2UgNTogRGF0YSBQZW5nZ3VuYWFuIEtSTCBzZWxhbWEgYnVsYW4gU2VwdGVtYmVyDQpsaWJyYXJ5KGtuaXRyKQ0KbGlicmFyeShEVCkNCg0KIyBEYXRhIHNpbXVsYXNpDQpUYW5nZ2FsIDwtIHNlcS5EYXRlKGZyb20gPSBhcy5EYXRlKCIyMDI1LTA5LTAxIiksIHRvID0gYXMuRGF0ZSgiMjAyNS0wOS0zMCIpLCBieSA9ICJkYXkiKQ0KSnVtbGFoX1BlbnVtcGFuZyA8LSBzYW1wbGUoNDgwMDo1NTAwLCAzMCwgcmVwbGFjZSA9IFRSVUUpDQpXYWt0dV9UdW5nZ3UgPC0gcm91bmQocnVuaWYoMzAsIG1pbiA9IDYuMCwgbWF4ID0gOC41KSwgMSkNCkplbmlzX0phbHVyIDwtIHNhbXBsZShjKCJNZXJhaCIsICJIaWphdSIsICJCaXJ1IiwgIkt1bmluZyIpLCAzMCwgcmVwbGFjZSA9IFRSVUUpDQoNClRpbmdrYXRfS2VwYWRhdGFuIDwtIGZhY3RvcigNCiAgc2FtcGxlKGMoIlJlbmRhaCIsICJTZWRhbmciLCAiVGluZ2dpIiwgIlNhbmdhdCBUaW5nZ2kiKSwgMzAsIHJlcGxhY2UgPSBUUlVFKSwNCiAgbGV2ZWxzID0gYygiUmVuZGFoIiwgIlNlZGFuZyIsICJUaW5nZ2kiLCAiU2FuZ2F0IFRpbmdnaSIpLA0KICBvcmRlcmVkID0gVFJVRQ0KKQ0KDQojRGF0YSBGcmFtZQ0KbXlfZGF0YSA8LSBkYXRhLmZyYW1lKA0KICBUYW5nZ2FsLA0KICBKdW1sYWhfUGVudW1wYW5nLA0KICBXYWt0dV9UdW5nZ3UsDQogIEplbmlzX0phbHVyLA0KICBUaW5na2F0X0tlcGFkYXRhbiwNCiAgc3RyaW5nc0FzRmFjdG9ycyA9IEZBTFNFDQopDQoNCiNJbnRlcmFjdGl2ZSB0YWJsZSBhbmQgY29sb3INCmRhdGF0YWJsZSgNCiAgbXlfZGF0YSwNCiAgY2FwdGlvbiA9IGh0bWx0b29sczo6dGFncyRjYXB0aW9uKA0KICAgIHN0eWxlID0gJ2NhcHRpb24tc2lkZTogdG9wOyB0ZXh0LWFsaWduOiBjZW50ZXI7IGZvbnQtd2VpZ2h0OiBib2xkOyBmb250LXNpemU6IDE2cHg7IGNvbG9yOiAjMkMzRTUwOycsDQogICAgJ1RhYmVsIDEuIERhdGEgU2ltdWxhc2kgUGVuZ2d1bmFhbiBLUkwgU2VsYW1hIEJ1bGFuIFNlcHRlbWJlcicNCiAgKSwNCiAgb3B0aW9ucyA9IGxpc3QoDQogICAgcGFnZUxlbmd0aCA9IDEwLA0KICAgIGF1dG9XaWR0aCA9IFRSVUUsDQogICAgZG9tID0gJ0JmcnRpcCcsDQogICAgYnV0dG9ucyA9IGMoJ2NvcHknLCAnY3N2JywgJ2V4Y2VsJywgJ3BkZicsICdwcmludCcpLA0KICAgIGluaXRDb21wbGV0ZSA9IEpTKA0KICAgICAgImZ1bmN0aW9uKHNldHRpbmdzLCBqc29uKSB7IiwNCiAgICAgICIkKHRoaXMuYXBpKCkudGFibGUoKS5oZWFkZXIoKSkuY3NzKHsnYmFja2dyb3VuZC1jb2xvcic6ICcjMkMzRTUwJywgJ2NvbG9yJzogJyNmZmYnfSk7IiwNCiAgICAgICJ9Ig0KICAgICkNCiAgKSwNCiAgcm93bmFtZXMgPSBGQUxTRSwNCiAgY2xhc3MgPSAnY2VsbC1ib3JkZXIgc3RyaXBlIGhvdmVyIGNvbXBhY3QnDQopICU+JQ0KICBmb3JtYXRTdHlsZSgNCiAgICAnSmVuaXNfSmFsdXInLA0KICAgIGJhY2tncm91bmRDb2xvciA9IHN0eWxlRXF1YWwoDQogICAgICBjKCJNZXJhaCIsICJIaWphdSIsICJCaXJ1IiwgIkt1bmluZyIpLA0KICAgICAgYygiI0ZGNkI2QiIsICIjNkJDQjc3IiwgIiM0RDk2RkYiLCAiI0ZGRDkzRCIpDQogICAgKSwNCiAgICBjb2xvciA9ICJibGFjayIsDQogICAgZm9udFdlaWdodCA9ICJib2xkIg0KICApICU+JQ0KICBmb3JtYXRTdHlsZSgNCiAgICAnVGluZ2thdF9LZXBhZGF0YW4nLA0KICAgIGJhY2tncm91bmRDb2xvciA9IHN0eWxlRXF1YWwoDQogICAgICBjKCJSZW5kYWgiLCAiU2VkYW5nIiwgIlRpbmdnaSIsICJTYW5nYXQgVGluZ2dpIiksDQogICAgICBjKCIjREZGRkQ2IiwgIiNGRkYzQjAiLCAiI0ZGRDZBNSIsICIjRkZCNUE3IikNCiAgICApLA0KICAgIGNvbG9yID0gImJsYWNrIiwNCiAgICBmb250V2VpZ2h0ID0gImJvbGQiDQogICkNCmBgYA0KDQoqKlNVTU1BUlkqKg0KYGBge3J9DQpteV9kYXRhX3N1bW1hcnkgPC0gc3VtbWFyeShteV9kYXRhKQ0Ka2FibGUobXlfZGF0YV9zdW1tYXJ5KQ0KDQpgYGANCioqSkVOSVMgSkFMVVIgKE5PTUlOQUwpKioNCmBgYHtyfQ0KdGFibGUobXlfZGF0YSRKZW5pc19KYWx1cikNCg0KYGBgDQoqKlRJTkdLQVQgS0VQQURBVEFOIChPUkRJTkFMKSoqDQpgYGB7Un0NCnRhYmxlKG15X2RhdGEkVGluZ2thdF9LZXBhZGF0YW4pDQoNCmBgYA==