Rationale

Media priming theory suggests the media a person consumes could lead them to think and act in certain ways, even if the person isn’t aware of it. Priming effects are typically short-lived. The made-up data in this study focuses on and compares whether short-term exposure to three different activities before recess impacted or influenced how the children in each of the groups acted during recess.

This hypothetical study focuses on 135 fifth-grade students being divided into equal groups of 45 students each to determine if short-term exposure (about 30 minutes before recess) to a violent but educational (math) computer game, compared to a non-violent educational computer game (also math) and a creative, abstract art project impacts the students’ behavior during recess.

Hypothesis

The 45 fifth-grade students who played the violent but educational computer game (“Exponent Fighter”) will likely be more aggressive during recess than the other 45 students who played the non-violent but educational computer game (“Exponent Builder”) and the 45 remaining student who worked on an art project.

Variables & method

The independent variable in this made-up assessment is the group which indicates which activity the students were participating in 30 minutes before recess — playing the violent “Equation Fighter” game, playing the nonviolent “Equation Builder,” or if they were in the group who made an art project.

The dependent variable is the value, or total time in minutes each student (a total of 135 divided into three equal groups of 45) spent playing an educational math computer game with violence.

About 30 minutes ahead of recess, the students (divided into three equal groups of 45) completed one of the three different activities described in the independent variable.

One group completed a math lesson that involved playing a violent computer game called “Exponent Fighter,” and included punching a computer-controlled opponent if they answered the question correctly. If the question was answered incorrectly, the opposite happened, and the computer-controlled opponent got the opportunity to punch the student’s on-screen character.

During the same 30-minute time period, the second group of 45 students played a similar math computer-based game called “Exponent Builder.” When the student answered a question correctly, their on-screen character got to add a block to a structure that would allow them to reach an otherwise-unreachable platform. The student won the game if they earned enough blocks to build the structure needed.  

The final group of 45 students during the same 30-minutes worked on an art lesson that focused on using a color where to select a color scheme for an abstract design made with paint and pre-cut stencils.

Results & discussion

Below are the results of the analysis which found that the 45 children who played the violent “Exponent Fighter” showed the highest mean time engaged in aggressive acts, which can be described as either verbal, including taunting or threatening, or physical, including pushing and grabbing during recess that students in the other two groups. The results then found students who played the non-violent “Exponent Builder” computer game were less aggressive and the student who made an art project were the least aggressive.

There was not a significant difference in aggression between the students who were in the non-violent computer game (“Exponent Builder”) group and the students who made an art project with paint and stencils.

Descriptive Statistics by Group
IV count mean sd min max
Art project 45 4.96 1.04 2.3 7.3
Nonviolent game 45 5.86 1.06 3.6 8.4
Violent game 45 10.75 1.00 8.5 12.8
Shapiro-Wilk Normality Test by Group
IV W_statistic p_value
Art project 0.99 0.923
Nonviolent game 0.98 0.594
Violent game 0.98 0.699
Note. If any p-value figures are 0.05 or less, if one or more group distributions appear non-normal, and any group sizes are less than 40, consider using the Kruskal-Wallis and Post-hoc Dunn’s Test results instead of the ANOVA and Tukey HSD Post-hoc results.
ANOVA Test Results
Statistic df df_resid p_value
420.86 2 87.94717 < .001
Tukey HSD Post-hoc Results
Comparison diff lwr upr p adj
Nonviolent game-Art project 0.90 0.38 1.42 < .001
Violent game-Art project 5.79 5.27 6.30 < .001
Violent game-Nonviolent game 4.89 4.37 5.40 < .001
Kruskal-Wallis Test Results
Statistic df p_value
95.23 2 < .001
Post-hoc Dunn’s Test Results
Comparison Z P.unadj P.adj
Art project - Nonviolent game -2.42 0.016 0.047
Art project - Violent game -9.40 < .001 < .001
Nonviolent game - Violent game -6.98 < .001 < .001

Code

# ============================================================
#  Setup: Install and Load Required Packages
# ============================================================
if (!require("tidyverse")) install.packages("tidyverse")
if (!require("gt")) install.packages("gt")
if (!require("gtExtras")) install.packages("gtExtras")
if (!require("FSA")) install.packages("FSA")
if (!require("plotly")) install.packages("plotly")

library(tidyverse)
library(gt)
library(gtExtras)
library(FSA)
library(plotly)

options(scipen = 999) # suppress scientific notation

# ============================================================
#  Step 1: Load Data
# ============================================================
mydata <- read.csv("Priming.csv") # <-- Edit YOURFILENAME.csv

# Specify DV and IV (edit column names here)
mydata$DV <- mydata$Value
mydata$IV <- mydata$Group

# ============================================================
#  Step 2: Visualize Group Distributions (Interactive)
# ============================================================
# Compute group means
group_means <- mydata %>%
  group_by(IV) %>%
  summarise(mean_value = mean(DV), .groups = "drop")

# Interactive plot (boxplot + group means)
box_plot <- plot_ly() %>%
  # Boxplot trace
  add_trace(
    data = mydata,
    x = ~IV, y = ~DV,
    type = "box",
    boxpoints = "outliers",   # only applies here
    marker = list(color = "red", size = 4),  # outlier style
    line = list(color = "black"),
    fillcolor = "royalblue",
    name = ""
  ) %>%
  # Group means (diamonds)
  add_trace(
    data = group_means,
    x = ~IV, y = ~mean_value,
    type = "scatter", mode = "markers",
    marker = list(
      symbol = "diamond", size = 9,
      color = "black", line = list(color = "white", width = 1)
    ),
    text = ~paste0("Mean = ", round(mean_value, 2)),
    hoverinfo = "text",
    name = "Group Mean"
  ) %>%
  layout(
    title = "Interactive Group Distributions with Means",
    xaxis = list(title = "Independent Variable (IV)"),
    yaxis = list(title = "Dependent Variable (DV)"),
    showlegend = FALSE
  )

# ============================================================
#  Step 3: Descriptive Statistics by Group
# ============================================================
desc_stats <- mydata %>%
  group_by(IV) %>%
  summarise(
    count = n(),
    mean = mean(DV, na.rm = TRUE),
    sd   = sd(DV, na.rm = TRUE),
    min  = min(DV, na.rm = TRUE),
    max  = max(DV, na.rm = TRUE)
  )

desc_table <- desc_stats %>%
  mutate(across(where(is.numeric), ~round(.x, 2))) %>%
  gt() %>%
  gt_theme_538() %>%
  tab_header(title = "Descriptive Statistics by Group")

# ============================================================
#  Step 4: Test Normality (Shapiro-Wilk)
# ============================================================
shapiro_results <- mydata %>%
  group_by(IV) %>%
  summarise(
    W_statistic = shapiro.test(DV)$statistic,
    p_value = shapiro.test(DV)$p.value
  )

shapiro_table <- shapiro_results %>%
  mutate(
    W_statistic = round(W_statistic, 2),
    p_value = ifelse(p_value < .001, "< .001", sprintf("%.3f", p_value))
  ) %>%
  gt() %>%
  gt_theme_538() %>%
  tab_header(title = "Shapiro-Wilk Normality Test by Group") %>%
  tab_source_note(
    source_note = "Note. If any p-value figures are 0.05 or less, if one or more group distributions appear non-normal, and any group sizes are less than 40, consider using the Kruskal-Wallis and Post-hoc Dunn’s Test results instead of the ANOVA and Tukey HSD Post-hoc results."
  )

# ============================================================
#  Step 5a: Non-Parametric Test (Kruskal-Wallis + Dunn)
# ============================================================
kruskal_res <- kruskal.test(DV ~ IV, data = mydata)

kruskal_table <- data.frame(
  Statistic = round(kruskal_res$statistic, 2),
  df = kruskal_res$parameter,
  p_value = ifelse(kruskal_res$p.value < .001, "< .001",
                   sprintf("%.3f", kruskal_res$p.value))
) %>%
  gt() %>%
  gt_theme_538() %>%
  tab_header(title = "Kruskal-Wallis Test Results")

dunn_res <- dunnTest(DV ~ IV, data = mydata, method = "bonferroni")$res

dunn_table <- dunn_res %>%
  mutate(
    Z = round(Z, 2),
    P.unadj = ifelse(P.unadj < .001, "< .001", sprintf("%.3f", P.unadj)),
    P.adj   = ifelse(P.adj < .001, "< .001", sprintf("%.3f", P.adj))
  ) %>%
  gt() %>%
  gt_theme_538() %>%
  tab_header(title = "Post-hoc Dunn’s Test Results")

# ============================================================
#  Step 5b: Parametric Test (ANOVA + Tukey)
# ============================================================
anova_res <- oneway.test(DV ~ IV, data = mydata, var.equal = FALSE)

anova_table <- data.frame(
  Statistic = round(anova_res$statistic, 2),
  df = anova_res$parameter[1],
  df_resid = anova_res$parameter[2],
  p_value = ifelse(anova_res$p.value < .001, "< .001",
                   sprintf("%.3f", anova_res$p.value))
) %>%
  gt() %>%
  gt_theme_538() %>%
  tab_header(title = "ANOVA Test Results")

anova_model <- aov(DV ~ IV, data = mydata)
tukey_res <- TukeyHSD(anova_model)$IV %>% as.data.frame()

tukey_table <- tukey_res %>%
  rownames_to_column("Comparison") %>%
  mutate(
    diff = round(diff, 2),
    lwr = round(lwr, 2),
    upr = round(upr, 2),
    `p adj` = ifelse(`p adj` < .001, "< .001", sprintf("%.3f", `p adj`))
  ) %>%
  gt() %>%
  gt_theme_538() %>%
  tab_header(title = "Tukey HSD Post-hoc Results")

# ============================================================
#  Step 6: Display Key Results
# ============================================================
# Interactive box plot
box_plot

# Tables
desc_table
shapiro_table
anova_table
tukey_table
kruskal_table
dunn_table