knitr::opts_chunk$set(
    echo = TRUE,
    message = FALSE,
    warning = FALSE
)
library(tidyverse)
library(kableExtra)
library(ggplot2)

# Načítanie datasetu
udaje <- read.csv("Travel dataset.csv", header = TRUE, sep = ",", dec = ".")

# Zobrazenie prvých riadkov a názvov stĺpcov
head(udaje)
colnames(udaje)
 [1] "Trip.ID"              "Destination"          "Start.date"          
 [4] "End.date"             "Duration..days."      "Traveler.name"       
 [7] "Traveler.age"         "Traveler.gender"      "Traveler.nationality"
[10] "Accommodation.type"   "Accommodation.cost"   "Transportation.type" 
[13] "Transportation.cost" 
# Počet riadkov a stĺpcov
nrow(udaje)
[1] 139
ncol(udaje)
[1] 13
# Základná štatistika
summary(udaje)
    Trip.ID      Destination         Start.date          End.date        
 Min.   :  1.0   Length:139         Length:139         Length:139        
 1st Qu.: 35.5   Class :character   Class :character   Class :character  
 Median : 70.0   Mode  :character   Mode  :character   Mode  :character  
 Mean   : 70.0                                                           
 3rd Qu.:104.5                                                           
 Max.   :139.0                                                           
                                                                         
 Duration..days.  Traveler.name       Traveler.age   Traveler.gender   
 Min.   : 5.000   Length:139         Min.   :20.00   Length:139        
 1st Qu.: 7.000   Class :character   1st Qu.:28.00   Class :character  
 Median : 7.000   Mode  :character   Median :31.00   Mode  :character  
 Mean   : 7.606                      Mean   :33.18                     
 3rd Qu.: 8.000                      3rd Qu.:38.00                     
 Max.   :14.000                      Max.   :60.00                     
 NA's   :2                           NA's   :2                         
 Traveler.nationality Accommodation.type Accommodation.cost Transportation.type
 Length:139           Length:139         Length:139         Length:139         
 Class :character     Class :character   Class :character   Class :character   
 Mode  :character     Mode  :character   Mode  :character   Mode  :character   
                                                                               
                                                                               
                                                                               
                                                                               
 Transportation.cost
 Length:139         
 Class :character   
 Mode  :character   
                    
                    
                    
                    
# Výber konkrétnych premenných (napr. krajina, trvanie cesty, náklady)
udaje %>%
  select(Destination, Traveler.name, Traveler.age) %>%
  head(10) %>%
  kable(caption = "Ukážka vybraných premenných z datasetu") %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed"))
Ukážka vybraných premenných z datasetu
Destination Traveler.name Traveler.age
London, UK John Smith 35
Phuket, Thailand Jane Doe 28
Bali, Indonesia David Lee 45
New York, USA Sarah Johnson 29
Tokyo, Japan Kim Nguyen 26
Paris, France Michael Brown 42
Sydney, Australia Emily Davis 33
Rio de Janeiro, Brazil Lucas Santos 25
Amsterdam, Netherlands Laura Janssen 31
Dubai, United Arab Emirates Mohammed Ali 39
# Vyber len cesty, ktoré trvali viac ako 5 dní a zorad ich podľa výdavkov
udaje %>%
  filter(Duration..days. > 5) %>%
  arrange(desc(Duration..days.)) %>%
  head(10) %>%
  kable(caption = "Najdrahšie cesty s trvaním nad 5 dní") %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed"))
Najdrahšie cesty s trvaním nad 5 dní
Trip.ID Destination Start.date End.date Duration..days. Traveler.name Traveler.age Traveler.gender Traveler.nationality Accommodation.type Accommodation.cost Transportation.type Transportation.cost
4 New York, USA 8/15/2023 8/29/2023 14 Sarah Johnson 29 Female British Hotel 2000 Flight 1000
31 Australia 8/20/2022 9/2/2022 13 Emma Davis 28 Female British Hotel $1,000 Car rental $500
86 Bali 8/10/2021 8/20/2021 11 Maria Garcia 42 Female Spanish Resort 1200 USD Plane 700 USD
89 London 11/20/2021 11/30/2021 11 James Wilson 29 Male British Hostel 300 USD Plane 400 USD
92 Rome 3/10/2022 3/20/2022 11 Giulia Rossi 30 Female Italian Hostel 200 USD Plane 350 USD
93 Bali 4/15/2022 4/25/2022 11 Putra Wijaya 33 Male Indonesian Villa 1500 USD Car rental 300 USD
119 Sydney, Aus 5/1/2022 5/12/2022 11 Cindy Chen 26 Female Chinese Airbnb 800 Plane 1000
7 Sydney, Australia 11/20/2023 11/30/2023 10 Emily Davis 33 Female Australian Hostel 500 Flight 1200
18 Bali 8/15/2023 8/25/2023 10 Michael Chang 28 Male Chinese Resort $1,500 Plane $700
20 Tokyo 10/5/2023 10/15/2023 10 Kenji Nakamura 45 Male Japanese Hotel $1,200 Plane $800
ggplot(udaje, aes(x = Duration..days., y = Accommodation.cost, color = Transportation.cost)) +
  geom_point(alpha = 0.6) +
  theme_minimal() +
  labs(
    title = "Závislosť medzi dĺžkou cesty a výdavkami",
    x = "Dĺžka cesty (dni)",
    y = "Výdavky ($)"
  )
# Priemerné výdavky podľa typu dopravy
udaje %>%
  group_by(Transportation.type) %>%
  summarise(
    Priemerne_naklady = mean(Transportation.cost, na.rm = FALSE),
    Pocet_ciest = n()
  ) %>%
  kable(caption = "Priemerné výdavky podľa spôsobu dopravy") %>%
  kable_styling(bootstrap_options = c("striped", "hover"))
Priemerné výdavky podľa spôsobu dopravy
Transportation.type Priemerne_naklady Pocet_ciest
NA 3
Airplane NA 5
Bus NA 6
Car NA 3
Car rental NA 13
Ferry NA 1
Flight NA 13
Plane NA 57
Subway NA 1
Train NA 37
NA
udaje <- udaje %>%
  mutate(
    Cena_kategorie = case_when(
      Transportation.cost < 500 ~ "Nízke náklady",
      Transportation.cost < 1500 ~ "Stredné náklady",
      TRUE ~ "Vysoké náklady"
    )
  )

head(udaje)
# Scatterplot – závislosť medzi dĺžkou cesty a výdavkami
ggplot(udaje, aes(x = Duration..days., y = Accommodation.cost, color = Transportation.cost)) +
  geom_point(alpha = 0.6) +
  theme_minimal() +
  labs(
    title = "Závislosť medzi dĺžkou cesty a výdavkami",
    x = "Dĺžka cesty (dni)",
    y = "Výdavky ($)"
  )

This is an R Markdown Notebook. When you execute code within the notebook, the results appear beneath the code.

Try executing this chunk by clicking the Run button within the chunk or by placing your cursor inside it and pressing Ctrl+Shift+Enter.

plot(cars)

Add a new chunk by clicking the Insert Chunk button on the toolbar or by pressing Ctrl+Alt+I.

When you save the notebook, an HTML file containing the code and output will be saved alongside it (click the Preview button or press Ctrl+Shift+K to preview the HTML file).

The preview shows you a rendered HTML copy of the contents of the editor. Consequently, unlike Knit, Preview does not run any R code chunks. Instead, the output of the chunk when it was last run in the editor is displayed.

LS0tCnRpdGxlOiAiUHLDoWNhIHMgZMOhdGFtaSIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQpgYGB7cn0Ka25pdHI6Om9wdHNfY2h1bmskc2V0KAogICAgZWNobyA9IFRSVUUsCiAgICBtZXNzYWdlID0gRkFMU0UsCiAgICB3YXJuaW5nID0gRkFMU0UKKQpgYGAKCmBgYHtyfQpsaWJyYXJ5KHRpZHl2ZXJzZSkKbGlicmFyeShrYWJsZUV4dHJhKQpsaWJyYXJ5KGdncGxvdDIpCgojIE5hxI3DrXRhbmllIGRhdGFzZXR1CnVkYWplIDwtIHJlYWQuY3N2KCJUcmF2ZWwgZGF0YXNldC5jc3YiLCBoZWFkZXIgPSBUUlVFLCBzZXAgPSAiLCIsIGRlYyA9ICIuIikKCiMgWm9icmF6ZW5pZSBwcnbDvWNoIHJpYWRrb3YgYSBuw6F6dm92IHN0xLpwY292CmhlYWQodWRhamUpCmNvbG5hbWVzKHVkYWplKQpgYGAKCmBgYHtyfQojIFBvxI1ldCByaWFka292IGEgc3TEunBjb3YKbnJvdyh1ZGFqZSkKbmNvbCh1ZGFqZSkKCiMgWsOha2xhZG7DoSDFoXRhdGlzdGlrYQpzdW1tYXJ5KHVkYWplKQoKIyBWw71iZXIga29ua3LDqXRueWNoIHByZW1lbm7DvWNoIChuYXByLiBrcmFqaW5hLCB0cnZhbmllIGNlc3R5LCBuw6FrbGFkeSkKdWRhamUgJT4lCiAgc2VsZWN0KERlc3RpbmF0aW9uLCBUcmF2ZWxlci5uYW1lLCBUcmF2ZWxlci5hZ2UpICU+JQogIGhlYWQoMTApICU+JQogIGthYmxlKGNhcHRpb24gPSAiVWvDocW+a2EgdnlicmFuw71jaCBwcmVtZW5uw71jaCB6IGRhdGFzZXR1IikgJT4lCiAga2FibGVfc3R5bGluZyhib290c3RyYXBfb3B0aW9ucyA9IGMoInN0cmlwZWQiLCAiaG92ZXIiLCAiY29uZGVuc2VkIikpCmBgYAoKYGBge3J9CiMgVnliZXIgbGVuIGNlc3R5LCBrdG9yw6kgdHJ2YWxpIHZpYWMgYWtvIDUgZG7DrSBhIHpvcmFkIGljaCBwb2TEvmEgdsO9ZGF2a292CnVkYWplICU+JQogIGZpbHRlcihEdXJhdGlvbi4uZGF5cy4gPiA1KSAlPiUKICBhcnJhbmdlKGRlc2MoRHVyYXRpb24uLmRheXMuKSkgJT4lCiAgaGVhZCgxMCkgJT4lCiAga2FibGUoY2FwdGlvbiA9ICJOYWpkcmFoxaFpZSBjZXN0eSBzIHRydmFuw61tIG5hZCA1IGRuw60iKSAlPiUKICBrYWJsZV9zdHlsaW5nKGJvb3RzdHJhcF9vcHRpb25zID0gYygic3RyaXBlZCIsICJob3ZlciIsICJjb25kZW5zZWQiKSkKYGBgCgpgYGB7cn0KZ2dwbG90KHVkYWplLCBhZXMoeCA9IER1cmF0aW9uLi5kYXlzLiwgeSA9IEFjY29tbW9kYXRpb24uY29zdCwgY29sb3IgPSBUcmFuc3BvcnRhdGlvbi5jb3N0KSkgKwogIGdlb21fcG9pbnQoYWxwaGEgPSAwLjYpICsKICB0aGVtZV9taW5pbWFsKCkgKwogIGxhYnMoCiAgICB0aXRsZSA9ICJaw6F2aXNsb3PFpSBtZWR6aSBkxLrFvmtvdSBjZXN0eSBhIHbDvWRhdmthbWkiLAogICAgeCA9ICJExLrFvmthIGNlc3R5IChkbmkpIiwKICAgIHkgPSAiVsO9ZGF2a3kgKCQpIgogICkKYGBgCmBgYHtyfQojIFByaWVtZXJuw6kgdsO9ZGF2a3kgcG9kxL5hIHR5cHUgZG9wcmF2eQp1ZGFqZSAlPiUKICBncm91cF9ieShUcmFuc3BvcnRhdGlvbi50eXBlKSAlPiUKICBzdW1tYXJpc2UoCiAgICBQcmllbWVybmVfbmFrbGFkeSA9IG1lYW4oVHJhbnNwb3J0YXRpb24uY29zdCwgbmEucm0gPSBGQUxTRSksCiAgICBQb2NldF9jaWVzdCA9IG4oKQogICkgJT4lCiAga2FibGUoY2FwdGlvbiA9ICJQcmllbWVybsOpIHbDvWRhdmt5IHBvZMS+YSBzcMO0c29idSBkb3ByYXZ5IikgJT4lCiAga2FibGVfc3R5bGluZyhib290c3RyYXBfb3B0aW9ucyA9IGMoInN0cmlwZWQiLCAiaG92ZXIiKSkKCmBgYApgYGB7cn0KdWRhamUgPC0gdWRhamUgJT4lCiAgbXV0YXRlKAogICAgQ2VuYV9rYXRlZ29yaWUgPSBjYXNlX3doZW4oCiAgICAgIFRyYW5zcG9ydGF0aW9uLmNvc3QgPCA1MDAgfiAiTsOtemtlIG7DoWtsYWR5IiwKICAgICAgVHJhbnNwb3J0YXRpb24uY29zdCA8IDE1MDAgfiAiU3RyZWRuw6kgbsOha2xhZHkiLAogICAgICBUUlVFIH4gIlZ5c29rw6kgbsOha2xhZHkiCiAgICApCiAgKQoKaGVhZCh1ZGFqZSkKYGBgCmBgYHtyfQojIFNjYXR0ZXJwbG90IOKAkyB6w6F2aXNsb3PFpSBtZWR6aSBkxLrFvmtvdSBjZXN0eSBhIHbDvWRhdmthbWkKZ2dwbG90KHVkYWplLCBhZXMoeCA9IER1cmF0aW9uLi5kYXlzLiwgeSA9IEFjY29tbW9kYXRpb24uY29zdCwgY29sb3IgPSBUcmFuc3BvcnRhdGlvbi5jb3N0KSkgKwogIGdlb21fcG9pbnQoYWxwaGEgPSAwLjYpICsKICB0aGVtZV9taW5pbWFsKCkgKwogIGxhYnMoCiAgICB0aXRsZSA9ICJaw6F2aXNsb3PFpSBtZWR6aSBkxLrFvmtvdSBjZXN0eSBhIHbDvWRhdmthbWkiLAogICAgeCA9ICJExLrFvmthIGNlc3R5IChkbmkpIiwKICAgIHkgPSAiVsO9ZGF2a3kgKCQpIgogICkKCmBgYAoKClRoaXMgaXMgYW4gW1IgTWFya2Rvd25dKGh0dHA6Ly9ybWFya2Rvd24ucnN0dWRpby5jb20pIE5vdGVib29rLiBXaGVuIHlvdSBleGVjdXRlIGNvZGUgd2l0aGluIHRoZSBub3RlYm9vaywgdGhlIHJlc3VsdHMgYXBwZWFyIGJlbmVhdGggdGhlIGNvZGUuIAoKVHJ5IGV4ZWN1dGluZyB0aGlzIGNodW5rIGJ5IGNsaWNraW5nIHRoZSAqUnVuKiBidXR0b24gd2l0aGluIHRoZSBjaHVuayBvciBieSBwbGFjaW5nIHlvdXIgY3Vyc29yIGluc2lkZSBpdCBhbmQgcHJlc3NpbmcgKkN0cmwrU2hpZnQrRW50ZXIqLiAKCmBgYHtyfQpwbG90KGNhcnMpCmBgYAoKQWRkIGEgbmV3IGNodW5rIGJ5IGNsaWNraW5nIHRoZSAqSW5zZXJ0IENodW5rKiBidXR0b24gb24gdGhlIHRvb2xiYXIgb3IgYnkgcHJlc3NpbmcgKkN0cmwrQWx0K0kqLgoKV2hlbiB5b3Ugc2F2ZSB0aGUgbm90ZWJvb2ssIGFuIEhUTUwgZmlsZSBjb250YWluaW5nIHRoZSBjb2RlIGFuZCBvdXRwdXQgd2lsbCBiZSBzYXZlZCBhbG9uZ3NpZGUgaXQgKGNsaWNrIHRoZSAqUHJldmlldyogYnV0dG9uIG9yIHByZXNzICpDdHJsK1NoaWZ0K0sqIHRvIHByZXZpZXcgdGhlIEhUTUwgZmlsZSkuCgpUaGUgcHJldmlldyBzaG93cyB5b3UgYSByZW5kZXJlZCBIVE1MIGNvcHkgb2YgdGhlIGNvbnRlbnRzIG9mIHRoZSBlZGl0b3IuIENvbnNlcXVlbnRseSwgdW5saWtlICpLbml0KiwgKlByZXZpZXcqIGRvZXMgbm90IHJ1biBhbnkgUiBjb2RlIGNodW5rcy4gSW5zdGVhZCwgdGhlIG91dHB1dCBvZiB0aGUgY2h1bmsgd2hlbiBpdCB3YXMgbGFzdCBydW4gaW4gdGhlIGVkaXRvciBpcyBkaXNwbGF5ZWQuCg==