Rationale

Priming theory explains how exposure to one stimulus can unconsciously influence how individuals perceive and respond to subsequent information. It highlights the subtle ways in which prior experiences or media messages shape perception, judgment, and behavior. By activating related concepts stored in memory, even a single exposure can influence how people interpret later content or make decisions. Applying priming theory enables researchers to examine how communication and media cues frame thought patterns, reinforce associations, and guide audience responses over time.

In the context of violent media, priming theory suggests that exposure to violent content can momentarily activate aggressive thoughts and behaviors, thereby increasing the likelihood of aggressive responses in the short term. Consequently, children who play violent video games are expected to exhibit more aggressive behaviors immediately afterward compared to those who play nonviolent or less violent games. Observing students’ interactions during recess following game play provides an opportunity to assess whether exposure to violent video games produces measurable increases in aggression, consistent with the predictions of priming theory.

Hypothesis

Children who play violent video games before recess will display higher levels of aggressive behavior during recess compared to children who play non-violent video games.

Variables & method

A total of 135 elementary school students were randomly divided into three groups. The first group played The Sims, a nonviolent life-simulation game; the second group played a fast-paced cooking game that involved completing food orders but contained no violent content; and the third group played Minecraft, which includes mild violence such as the use of weapons and explosions. After playing their assigned games, all students were observed during a 30-minute recess period. The researcher recorded how many minutes each student engaged in physical or verbal aggression. The continuous dependent variable, Value, represented the number of minutes of aggressive behavior, while the categorical independent variable, Group, indicated which video game each student played. ANOVA was conducted to determine whether the type of video game played before recess had a significant effect on the amount of aggressive behavior shown during recess.

Results & discussion

The results showed that children who played Minecraft, the mildly violent game, displayed more aggressive behavior during recess than those who played the nonviolent games The Sims or the cooking game. Statistical tests confirmed a significant difference between the groups, with post-hoc results indicating that the Minecraft group was more aggressive overall. These findings support the hypothesis which stated that children who play violent video games before recess will display higher levels of aggressive behavior during recess compared to children who play non-violent video games.

Descriptive Statistics by Group
IV count mean sd min max
Cooking game 45 7.98 1.86 5.0 11.9
Minecraft 45 19.62 2.48 15.4 24.8
Sims 45 5.03 1.85 2.1 9.3
Shapiro-Wilk Normality Test by Group
IV W_statistic p_value
Cooking game 0.95 0.062
Minecraft 0.96 0.136
Sims 0.97 0.294
Note. If any p-value figures are 0.05 or less, if one or more group distributions appear non-normal, and any group sizes are less than 40, consider using the Kruskal-Wallis and Post-hoc Dunn’s Test results instead of the ANOVA and Tukey HSD Post-hoc results.
ANOVA Test Results
Statistic df df_resid p_value
516.05 2 86.69692 < .001
Tukey HSD Post-hoc Results
Comparison diff lwr upr p adj
Minecraft-Cooking game 11.64 10.60 12.68 < .001
Sims-Cooking game -2.95 -3.99 -1.91 < .001
Sims-Minecraft -14.59 -15.63 -13.55 < .001

Code:

# ============================================================
#  Setup: Install and Load Required Packages
# ============================================================
if (!require("tidyverse")) install.packages("tidyverse")
if (!require("gt")) install.packages("gt")
if (!require("gtExtras")) install.packages("gtExtras")
if (!require("FSA")) install.packages("FSA")
if (!require("plotly")) install.packages("plotly")

library(tidyverse)
library(gt)
library(gtExtras)
library(FSA)
library(plotly)

options(scipen = 999) # suppress scientific notation

# ============================================================
#  Step 1: Load Data
# ============================================================
mydata <- read.csv("Priming.csv") # <-- Edit YOURFILENAME.csv

# Specify DV and IV (edit column names here)
mydata$DV <- mydata$Value
mydata$IV <- mydata$Group

# ============================================================
#  Step 2: Visualize Group Distributions (Interactive)
# ============================================================
# Compute group means
group_means <- mydata %>%
  group_by(IV) %>%
  summarise(mean_value = mean(DV), .groups = "drop")

# Interactive plot (boxplot + group means)
box_plot <- plot_ly() %>%
  # Boxplot trace
  add_trace(
    data = mydata,
    x = ~IV, y = ~DV,
    type = "box",
    boxpoints = "outliers",   # only applies here
    marker = list(color = "red", size = 4),  # outlier style
    line = list(color = "black"),
    fillcolor = "royalblue",
    name = ""
  ) %>%
  # Group means (diamonds)
  add_trace(
    data = group_means,
    x = ~IV, y = ~mean_value,
    type = "scatter", mode = "markers",
    marker = list(
      symbol = "diamond", size = 9,
      color = "black", line = list(color = "white", width = 1)
    ),
    text = ~paste0("Mean = ", round(mean_value, 2)),
    hoverinfo = "text",
    name = "Group Mean"
  ) %>%
  layout(
    title = "Interactive Group Distributions with Means",
    xaxis = list(title = "Independent Variable (IV)"),
    yaxis = list(title = "Dependent Variable (DV)"),
    showlegend = FALSE
  )

# ============================================================
#  Step 3: Descriptive Statistics by Group
# ============================================================
desc_stats <- mydata %>%
  group_by(IV) %>%
  summarise(
    count = n(),
    mean = mean(DV, na.rm = TRUE),
    sd   = sd(DV, na.rm = TRUE),
    min  = min(DV, na.rm = TRUE),
    max  = max(DV, na.rm = TRUE)
  )

desc_table <- desc_stats %>%
  mutate(across(where(is.numeric), ~round(.x, 2))) %>%
  gt() %>%
  gt_theme_538() %>%
  tab_header(title = "Descriptive Statistics by Group")

# ============================================================
#  Step 4: Test Normality (Shapiro-Wilk)
# ============================================================
shapiro_results <- mydata %>%
  group_by(IV) %>%
  summarise(
    W_statistic = shapiro.test(DV)$statistic,
    p_value = shapiro.test(DV)$p.value
  )

shapiro_table <- shapiro_results %>%
  mutate(
    W_statistic = round(W_statistic, 2),
    p_value = ifelse(p_value < .001, "< .001", sprintf("%.3f", p_value))
  ) %>%
  gt() %>%
  gt_theme_538() %>%
  tab_header(title = "Shapiro-Wilk Normality Test by Group") %>%
  tab_source_note(
    source_note = "Note. If any p-value figures are 0.05 or less, if one or more group distributions appear non-normal, and any group sizes are less than 40, consider using the Kruskal-Wallis and Post-hoc Dunn’s Test results instead of the ANOVA and Tukey HSD Post-hoc results."
  )

# ============================================================
#  Step 5a: Non-Parametric Test (Kruskal-Wallis + Dunn)
# ============================================================
kruskal_res <- kruskal.test(DV ~ IV, data = mydata)

kruskal_table <- data.frame(
  Statistic = round(kruskal_res$statistic, 2),
  df = kruskal_res$parameter,
  p_value = ifelse(kruskal_res$p.value < .001, "< .001",
                   sprintf("%.3f", kruskal_res$p.value))
) %>%
  gt() %>%
  gt_theme_538() %>%
  tab_header(title = "Kruskal-Wallis Test Results")

dunn_res <- dunnTest(DV ~ IV, data = mydata, method = "bonferroni")$res

dunn_table <- dunn_res %>%
  mutate(
    Z = round(Z, 2),
    P.unadj = ifelse(P.unadj < .001, "< .001", sprintf("%.3f", P.unadj)),
    P.adj   = ifelse(P.adj < .001, "< .001", sprintf("%.3f", P.adj))
  ) %>%
  gt() %>%
  gt_theme_538() %>%
  tab_header(title = "Post-hoc Dunn’s Test Results")

# ============================================================
#  Step 5b: Parametric Test (ANOVA + Tukey)
# ============================================================
anova_res <- oneway.test(DV ~ IV, data = mydata, var.equal = FALSE)

anova_table <- data.frame(
  Statistic = round(anova_res$statistic, 2),
  df = anova_res$parameter[1],
  df_resid = anova_res$parameter[2],
  p_value = ifelse(anova_res$p.value < .001, "< .001",
                   sprintf("%.3f", anova_res$p.value))
) %>%
  gt() %>%
  gt_theme_538() %>%
  tab_header(title = "ANOVA Test Results")

anova_model <- aov(DV ~ IV, data = mydata)
tukey_res <- TukeyHSD(anova_model)$IV %>% as.data.frame()

tukey_table <- tukey_res %>%
  rownames_to_column("Comparison") %>%
  mutate(
    diff = round(diff, 2),
    lwr = round(lwr, 2),
    upr = round(upr, 2),
    `p adj` = ifelse(`p adj` < .001, "< .001", sprintf("%.3f", `p adj`))
  ) %>%
  gt() %>%
  gt_theme_538() %>%
  tab_header(title = "Tukey HSD Post-hoc Results")

# ============================================================
#  Step 6: Display Key Results
# ============================================================
# Interactive box plot
box_plot

# Tables
desc_table
shapiro_table
anova_table
tukey_table