This homework assignment uses the flights
dataset from
the nycflights13
package, which contains real-world data on
over 336,000 flights departing from New York City airports (JFK, LGA,
EWR) in 2013. The dataset includes variables such as departure and
arrival times (with date components), airline carrier (categorical),
origin and destination airports (categorical), delays (with missing
values for cancelled flights), distance, and more. It is sourced from
the US Bureau of Transportation Statistics.
This assignment reinforces the Week 4 topics:
lubridate
.zoo
.All questions (except the final reflection) require you to write and run R code to solve them. Submit your URL for your RPubs. Make sure to comment your code, along with key outputs (e.g., summaries, plots, or tables). Use the provided setup code to load the data.
Install and load the necessary packages if not already done:
#install.packages(c("nycflights13", "dplyr", "lubridate", "zoo", "forcats")) # If needed
library(nycflights13)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(lubridate)
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
## date, intersect, setdiff, union
library(zoo)
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
library(forcats) # For factor recoding; base R alternatives are acceptable
data(flights) # Load the dataset
Explore the data briefly with str(flights)
and
head(flights)
to understand the structure. Note: Dates are
in separate year
, month
, day
columns; times are in dep_time
and arr_time
(as integers like 517 for 5:17 AM).
#Explore your data here
str(flights)
## tibble [336,776 × 19] (S3: tbl_df/tbl/data.frame)
## $ year : int [1:336776] 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 ...
## $ month : int [1:336776] 1 1 1 1 1 1 1 1 1 1 ...
## $ day : int [1:336776] 1 1 1 1 1 1 1 1 1 1 ...
## $ dep_time : int [1:336776] 517 533 542 544 554 554 555 557 557 558 ...
## $ sched_dep_time: int [1:336776] 515 529 540 545 600 558 600 600 600 600 ...
## $ dep_delay : num [1:336776] 2 4 2 -1 -6 -4 -5 -3 -3 -2 ...
## $ arr_time : int [1:336776] 830 850 923 1004 812 740 913 709 838 753 ...
## $ sched_arr_time: int [1:336776] 819 830 850 1022 837 728 854 723 846 745 ...
## $ arr_delay : num [1:336776] 11 20 33 -18 -25 12 19 -14 -8 8 ...
## $ carrier : chr [1:336776] "UA" "UA" "AA" "B6" ...
## $ flight : int [1:336776] 1545 1714 1141 725 461 1696 507 5708 79 301 ...
## $ tailnum : chr [1:336776] "N14228" "N24211" "N619AA" "N804JB" ...
## $ origin : chr [1:336776] "EWR" "LGA" "JFK" "JFK" ...
## $ dest : chr [1:336776] "IAH" "IAH" "MIA" "BQN" ...
## $ air_time : num [1:336776] 227 227 160 183 116 150 158 53 140 138 ...
## $ distance : num [1:336776] 1400 1416 1089 1576 762 ...
## $ hour : num [1:336776] 5 5 5 5 6 5 6 6 6 6 ...
## $ minute : num [1:336776] 15 29 40 45 0 58 0 0 0 0 ...
## $ time_hour : POSIXct[1:336776], format: "2013-01-01 05:00:00" "2013-01-01 05:00:00" ...
head(flights)
## # A tibble: 6 × 19
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 1 517 515 2 830 819
## 2 2013 1 1 533 529 4 850 830
## 3 2013 1 1 542 540 2 923 850
## 4 2013 1 1 544 545 -1 1004 1022
## 5 2013 1 1 554 600 -6 812 837
## 6 2013 1 1 554 558 -4 740 728
## # ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## # hour <dbl>, minute <dbl>, time_hour <dttm>
summary(flights)
## year month day dep_time sched_dep_time
## Min. :2013 Min. : 1.000 Min. : 1.00 Min. : 1 Min. : 106
## 1st Qu.:2013 1st Qu.: 4.000 1st Qu.: 8.00 1st Qu.: 907 1st Qu.: 906
## Median :2013 Median : 7.000 Median :16.00 Median :1401 Median :1359
## Mean :2013 Mean : 6.549 Mean :15.71 Mean :1349 Mean :1344
## 3rd Qu.:2013 3rd Qu.:10.000 3rd Qu.:23.00 3rd Qu.:1744 3rd Qu.:1729
## Max. :2013 Max. :12.000 Max. :31.00 Max. :2400 Max. :2359
## NA's :8255
## dep_delay arr_time sched_arr_time arr_delay
## Min. : -43.00 Min. : 1 Min. : 1 Min. : -86.000
## 1st Qu.: -5.00 1st Qu.:1104 1st Qu.:1124 1st Qu.: -17.000
## Median : -2.00 Median :1535 Median :1556 Median : -5.000
## Mean : 12.64 Mean :1502 Mean :1536 Mean : 6.895
## 3rd Qu.: 11.00 3rd Qu.:1940 3rd Qu.:1945 3rd Qu.: 14.000
## Max. :1301.00 Max. :2400 Max. :2359 Max. :1272.000
## NA's :8255 NA's :8713 NA's :9430
## carrier flight tailnum origin
## Length:336776 Min. : 1 Length:336776 Length:336776
## Class :character 1st Qu.: 553 Class :character Class :character
## Mode :character Median :1496 Mode :character Mode :character
## Mean :1972
## 3rd Qu.:3465
## Max. :8500
##
## dest air_time distance hour
## Length:336776 Min. : 20.0 Min. : 17 Min. : 1.00
## Class :character 1st Qu.: 82.0 1st Qu.: 502 1st Qu.: 9.00
## Mode :character Median :129.0 Median : 872 Median :13.00
## Mean :150.7 Mean :1040 Mean :13.18
## 3rd Qu.:192.0 3rd Qu.:1389 3rd Qu.:17.00
## Max. :695.0 Max. :4983 Max. :23.00
## NA's :9430
## minute time_hour
## Min. : 0.00 Min. :2013-01-01 05:00:00
## 1st Qu.: 8.00 1st Qu.:2013-04-04 13:00:00
## Median :29.00 Median :2013-07-03 10:00:00
## Mean :26.23 Mean :2013-07-03 05:22:54
## 3rd Qu.:44.00 3rd Qu.:2013-10-01 07:00:00
## Max. :59.00 Max. :2013-12-31 23:00:00
##
lubridate
Create a column dep_datetime by combining year, month, day, and
dep_time into a POSIXct datetime using lubridate. (Hint: Use
make_datetime
function to combine: year, month, day, for
hour and min use division, e.g., hour = dep_time %/% 100, min = dep_time
%% 100.)
Show the first 5 rows of flights with dep_datetime.
Output: First 5 rows showing year, month, day, dep_time, and dep_datetime.
extract_h_m <- function(hhmm) {
hour <- ifelse(is.na(hhmm), NA_integer_, hhmm %/% 100)
minute <- ifelse(is.na(hhmm), NA_integer_, hhmm %% 100)
tibble(hour = hour, minute = minute)
}
flights_q1 <- flights %>%
mutate(
dep_hour = ifelse(is.na(dep_time), NA_integer_, dep_time %/% 100),
dep_min = ifelse(is.na(dep_time), NA_integer_, dep_time %% 100),
dep_datetime = make_datetime(year = year, month = month, day = day, hour = dep_hour, min = dep_min)
)
flights_q1 %>%
select(year, month, day, dep_time, dep_datetime) %>%
slice_head(n = 5)
## # A tibble: 5 × 5
## year month day dep_time dep_datetime
## <int> <int> <int> <int> <dttm>
## 1 2013 1 1 517 2013-01-01 05:17:00
## 2 2013 1 1 533 2013-01-01 05:33:00
## 3 2013 1 1 542 2013-01-01 05:42:00
## 4 2013 1 1 544 2013-01-01 05:44:00
## 5 2013 1 1 554 2013-01-01 05:54:00
lubridate
Using dep_datetime from Question 1, create a column weekday with the day of the week (e.g., “Mon”) using wday(dep_datetime, label = TRUE). Use table() to show how many flights occur on each weekday.
Output: The table of flight counts by weekday.
flights_q2 <- flights_q1 %>%
mutate(weekday = wday(dep_datetime, label = TRUE, abbr = TRUE))
weekday_table <- table(flights_q2$weekday, useNA = "ifany")
weekday_table
##
## Sun Mon Tue Wed Thu Fri Sat <NA>
## 45643 49468 49273 48858 48654 48703 37922 8255
Filter for flights from JFK (origin == “JFK”) and create a zoo time series of departure delays (dep_delay) by dep_datetime. Plot the time series (use plot()). (Hint: Use a subset to avoid memory issues, e.g., first 1000 JFK flights using `slice_head().)
Output: The time series plot.
jfk_flights <- flights_q2 %>%
filter(origin == "JFK" & !is.na(dep_datetime)) %>%
arrange(dep_datetime) %>%
slice_head(n = 1000) %>%
select(dep_datetime, dep_delay)
jfk_zoo <- zoo(jfk_flights$dep_delay, order.by = jfk_flights$dep_datetime)
## Warning in zoo(jfk_flights$dep_delay, order.by = jfk_flights$dep_datetime):
## some methods for "zoo" objects do not work if the index entries in 'order.by'
## are not unique
plot(jfk_zoo, main = "JFK flights: dep_delay (first 1000)", xlab = "Departure datetime", ylab = "Departure delay (minutes)")
Convert the origin column (airports: “JFK”, “LGA”, “EWR”) to a factor called origin_factor. Show the factor levels with levels() and create a frequency table with table(). Make a bar plot of flights by airport using barplot().
Output: The levels, frequency table, and bar plot.
flights_q4 <- flights %>%
mutate(origin_factor = factor(origin, levels = c("JFK", "LGA", "EWR")))
origin_levels <- levels(flights_q4$origin_factor)
origin_levels
## [1] "JFK" "LGA" "EWR"
origin_freq <- table(flights_q4$origin_factor)
origin_freq
##
## JFK LGA EWR
## 111279 104662 120835
barplot(origin_freq, main = "Flights by Origin Airport (2013)", ylab = "Number of flights", xlab = "Origin", ylim = c(0, max(origin_freq) * 1.1))
Recode origin_factor from Question 4 into a new column origin_recoded with full names: “JFK” to “Kennedy”, “LGA” to “LaGuardia”, “EWR” to “Newark” using fct_recode() or base R. Create a bar plot of the recoded factor.
Output: The new levels and bar plot.
flights_q5 <- flights_q4 %>%
mutate(origin_recoded = fct_recode(origin_factor, "Kennedy" = "JFK", "LaGuardia" = "LGA", "Newark" = "EWR"))
levels(flights_q5$origin_recoded)
## [1] "Kennedy" "LaGuardia" "Newark"
recoded_freq <- table(flights_q5$origin_recoded)
recoded_freq
##
## Kennedy LaGuardia Newark
## 111279 104662 120835
barplot(recoded_freq, main = "Flights by Origin (Recoded Names)", ylab = "Number of flights", xlab = "Origin (full name)", las = 1)
Count missing values in dep_delay and arr_delay using colSums(is.na(flights)). Impute missing dep_delay values with 0 (assuming no delay for cancelled flights) in a new column dep_delay_imputed. Create a frequency table of dep_delay_imputed for delays between -20 and 20 minutes (use filter() to subset).
Output: NA counts, and the frequency table for imputed delays.
na_counts <- colSums(is.na(flights[, c("dep_delay", "arr_delay")]))
na_counts
## dep_delay arr_delay
## 8255 9430
flights_q6 <- flights %>%
mutate(dep_delay_imputed = ifelse(is.na(dep_delay), 0, dep_delay))
freq_range <- flights_q6 %>%
filter(!is.na(dep_delay_imputed) & dep_delay_imputed >= -20 & dep_delay_imputed <= 20) %>%
count(dep_delay_imputed) %>%
arrange(dep_delay_imputed)
head(freq_range, 20)
## # A tibble: 20 × 2
## dep_delay_imputed n
## <dbl> <int>
## 1 -20 37
## 2 -19 19
## 3 -18 81
## 4 -17 110
## 5 -16 162
## 6 -15 408
## 7 -14 498
## 8 -13 901
## 9 -12 1594
## 10 -11 2727
## 11 -10 5891
## 12 -9 7875
## 13 -8 11791
## 14 -7 16752
## 15 -6 20701
## 16 -5 24821
## 17 -4 24619
## 18 -3 24218
## 19 -2 21516
## 20 -1 18813
# Optionally show as table:
# table(flights_q6$dep_delay_imputed[flights_q6$dep_delay_imputed >= -20 & flights_q6$dep_delay_imputed <= 20])
Reflect on the assignment: What was easy or hard about working with flight dates or missing data? How might assuming zero delay for missing values (Question 6) affect conclusions about flight punctuality? What did you learn about NYC flights in 2013? (150-200 words) Here’s a simpler, more casual version of your reflection for Question 7:
Working with the NYC flight data was kind of fun but also tricky at
times. It was easy to combine the year, month, day, and time into one
date column using lubridate
and to see which day of the
week flights happened. That part was cool because it made the data
easier to understand. The harder part was dealing with missing values,
especially for departure delays. I had to think about what it means to
replace missing delays with zero.
Assuming zero for missing delays could make it look like flights were on time more often than they really were. This might make the airport or airline seem better at being punctual than it actually was.
From this assignment, I learned that NYC flights in 2013 had a lot of different delays, and some airports like JFK, LGA, and EWR had different numbers of flights. Overall, I realized that handling dates and missing data correctly is really important if you want to understand flight patterns accurately.