This homework assignment uses the flights
dataset from
the nycflights13
package, which contains real-world data on
over 336,000 flights departing from New York City airports (JFK, LGA,
EWR) in 2013. The dataset includes variables such as departure and
arrival times (with date components), airline carrier (categorical),
origin and destination airports (categorical), delays (with missing
values for cancelled flights), distance, and more. It is sourced from
the US Bureau of Transportation Statistics.
This assignment reinforces the Week 4 topics:
lubridate
.zoo
.All questions (except the final reflection) require you to write and run R code to solve them. Submit your URL for your RPubs. Make sure to comment your code, along with key outputs (e.g., summaries, plots, or tables). Use the provided setup code to load the data.
Install and load the necessary packages if not already done:
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## âś” forcats 1.0.0 âś” readr 2.1.5
## âś” ggplot2 3.5.2 âś” stringr 1.5.2
## âś” lubridate 1.9.4 âś” tibble 3.3.0
## âś” purrr 1.1.0 âś” tidyr 1.3.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## âś– dplyr::filter() masks stats::filter()
## âś– dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
##
## Attaching package: 'zoo'
##
##
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
## Rows: 336,776
## Columns: 19
## $ year <int> 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2…
## $ month <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
## $ day <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
## $ dep_time <int> 517, 533, 542, 544, 554, 554, 555, 557, 557, 558, 558, …
## $ sched_dep_time <int> 515, 529, 540, 545, 600, 558, 600, 600, 600, 600, 600, …
## $ dep_delay <dbl> 2, 4, 2, -1, -6, -4, -5, -3, -3, -2, -2, -2, -2, -2, -1…
## $ arr_time <int> 830, 850, 923, 1004, 812, 740, 913, 709, 838, 753, 849,…
## $ sched_arr_time <int> 819, 830, 850, 1022, 837, 728, 854, 723, 846, 745, 851,…
## $ arr_delay <dbl> 11, 20, 33, -18, -25, 12, 19, -14, -8, 8, -2, -3, 7, -1…
## $ carrier <chr> "UA", "UA", "AA", "B6", "DL", "UA", "B6", "EV", "B6", "…
## $ flight <int> 1545, 1714, 1141, 725, 461, 1696, 507, 5708, 79, 301, 4…
## $ tailnum <chr> "N14228", "N24211", "N619AA", "N804JB", "N668DN", "N394…
## $ origin <chr> "EWR", "LGA", "JFK", "JFK", "LGA", "EWR", "EWR", "LGA",…
## $ dest <chr> "IAH", "IAH", "MIA", "BQN", "ATL", "ORD", "FLL", "IAD",…
## $ air_time <dbl> 227, 227, 160, 183, 116, 150, 158, 53, 140, 138, 149, 1…
## $ distance <dbl> 1400, 1416, 1089, 1576, 762, 719, 1065, 229, 944, 733, …
## $ hour <dbl> 5, 5, 5, 5, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6, 6…
## $ minute <dbl> 15, 29, 40, 45, 0, 58, 0, 0, 0, 0, 0, 0, 0, 0, 0, 59, 0…
## $ time_hour <dttm> 2013-01-01 05:00:00, 2013-01-01 05:00:00, 2013-01-01 0…
## # A tibble: 6 Ă— 19
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 1 517 515 2 830 819
## 2 2013 1 1 533 529 4 850 830
## 3 2013 1 1 542 540 2 923 850
## 4 2013 1 1 544 545 -1 1004 1022
## 5 2013 1 1 554 600 -6 812 837
## 6 2013 1 1 554 558 -4 740 728
## # ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## # hour <dbl>, minute <dbl>, time_hour <dttm>
Explore the data briefly with str(flights)
and
head(flights)
to understand the structure. Note: Dates are
in separate year
, month
, day
columns; times are in dep_time
and arr_time
(as integers like 517 for 5:17 AM).
#Explore your data here
str(flights)
## tibble [336,776 Ă— 19] (S3: tbl_df/tbl/data.frame)
## $ year : int [1:336776] 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 ...
## $ month : int [1:336776] 1 1 1 1 1 1 1 1 1 1 ...
## $ day : int [1:336776] 1 1 1 1 1 1 1 1 1 1 ...
## $ dep_time : int [1:336776] 517 533 542 544 554 554 555 557 557 558 ...
## $ sched_dep_time: int [1:336776] 515 529 540 545 600 558 600 600 600 600 ...
## $ dep_delay : num [1:336776] 2 4 2 -1 -6 -4 -5 -3 -3 -2 ...
## $ arr_time : int [1:336776] 830 850 923 1004 812 740 913 709 838 753 ...
## $ sched_arr_time: int [1:336776] 819 830 850 1022 837 728 854 723 846 745 ...
## $ arr_delay : num [1:336776] 11 20 33 -18 -25 12 19 -14 -8 8 ...
## $ carrier : chr [1:336776] "UA" "UA" "AA" "B6" ...
## $ flight : int [1:336776] 1545 1714 1141 725 461 1696 507 5708 79 301 ...
## $ tailnum : chr [1:336776] "N14228" "N24211" "N619AA" "N804JB" ...
## $ origin : chr [1:336776] "EWR" "LGA" "JFK" "JFK" ...
## $ dest : chr [1:336776] "IAH" "IAH" "MIA" "BQN" ...
## $ air_time : num [1:336776] 227 227 160 183 116 150 158 53 140 138 ...
## $ distance : num [1:336776] 1400 1416 1089 1576 762 ...
## $ hour : num [1:336776] 5 5 5 5 6 5 6 6 6 6 ...
## $ minute : num [1:336776] 15 29 40 45 0 58 0 0 0 0 ...
## $ time_hour : POSIXct[1:336776], format: "2013-01-01 05:00:00" "2013-01-01 05:00:00" ...
head(flights)
## # A tibble: 6 Ă— 19
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 1 517 515 2 830 819
## 2 2013 1 1 533 529 4 850 830
## 3 2013 1 1 542 540 2 923 850
## 4 2013 1 1 544 545 -1 1004 1022
## 5 2013 1 1 554 600 -6 812 837
## 6 2013 1 1 554 558 -4 740 728
## # ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## # hour <dbl>, minute <dbl>, time_hour <dttm>
lubridate
Create a column dep_datetime by combining year, month, day, and
dep_time into a POSIXct datetime using lubridate. (Hint: Use
make_datetime
function to combine: year, month, day, for
hour and min use division, e.g., hour = dep_time %/% 100, min = dep_time
%% 100.)
Show the first 5 rows of flights with dep_datetime.
Output: First 5 rows showing year, month, day, dep_time, and dep_datetime.
flights <- flights %>%
mutate(
dep_hour = dep_time %/% 100,
dep_min = dep_time %% 100,
dep_datetime = make_datetime(year, month, day, dep_hour, dep_min)
)
flights %>%
select(year, month, day, dep_time, dep_datetime) %>%
head(5)
## # A tibble: 5 Ă— 5
## year month day dep_time dep_datetime
## <int> <int> <int> <int> <dttm>
## 1 2013 1 1 517 2013-01-01 05:17:00
## 2 2013 1 1 533 2013-01-01 05:33:00
## 3 2013 1 1 542 2013-01-01 05:42:00
## 4 2013 1 1 544 2013-01-01 05:44:00
## 5 2013 1 1 554 2013-01-01 05:54:00
lubridate
Using dep_datetime from Question 1, create a column weekday with the day of the week (e.g., “Mon”) using wday(dep_datetime, label = TRUE). Use table() to show how many flights occur on each weekday.
Output: The table of flight counts by weekday.
flights <- flights %>%
mutate(
weekday = wday(dep_datetime, label = TRUE)
)
weekday_counts <- table(flights$weekday)
weekday_counts
##
## Sun Mon Tue Wed Thu Fri Sat
## 45643 49468 49273 48858 48654 48703 37922
#### just makes it look nicer in my opinion
flights %>%
count(weekday) %>%
arrange(weekday)
## # A tibble: 8 Ă— 2
## weekday n
## <ord> <int>
## 1 Sun 45643
## 2 Mon 49468
## 3 Tue 49273
## 4 Wed 48858
## 5 Thu 48654
## 6 Fri 48703
## 7 Sat 37922
## 8 <NA> 8255
Filter for flights from JFK (origin == “JFK”) and create a zoo time series of departure delays (dep_delay) by dep_datetime. Plot the time series (use plot()). (Hint: Use a subset to avoid memory issues, e.g., first 1000 JFK flights using `slice_head().)
Output: The time series plot.
jfk_flights <- flights %>%
filter(origin == "JFK") %>%
slice_head(n = 1000) %>%
filter(!is.na(dep_delay), !is.na(dep_datetime)) %>%
arrange(dep_datetime)
jfk_ts <- zoo(jfk_flights$dep_delay, order.by = jfk_flights$dep_datetime)
## Warning in zoo(jfk_flights$dep_delay, order.by = jfk_flights$dep_datetime):
## some methods for "zoo" objects do not work if the index entries in 'order.by'
## are not unique
plot(jfk_ts,
main = "Departure Delays for JFK Flights (First 1000)",
xlab = "Departure DateTime",
ylab = "Departure Delay (minutes)",
col = "darkblue",
lwd = 1)
# this is just adding a horizontal line at 0 to show the on time departures from the airport
abline(h = 0, col = "red", lty = 2)
Convert the origin column (airports: “JFK”, “LGA”, “EWR”) to a factor called origin_factor. Show the factor levels with levels() and create a frequency table with table(). Make a bar plot of flights by airport using barplot().
Output: The levels, frequency table, and bar plot.
flights <- flights %>%
mutate(
origin_factor = as.factor(origin)
)
#factor levels
levels(flights$origin_factor)
## [1] "EWR" "JFK" "LGA"
origin_table <- table(flights$origin_factor)
origin_table
##
## EWR JFK LGA
## 120835 111279 104662
barplot(origin_table,
main = "Number of Flights by Origin Airport",
xlab = "Airport",
ylab = "Number of Flights",
col = "steelblue",
border = "white")
Recode origin_factor from Question 4 into a new column origin_recoded with full names: “JFK” to “Kennedy”, “LGA” to “LaGuardia”, “EWR” to “Newark” using fct_recode() or base R. Create a bar plot of the recoded factor.
Output: The new levels and bar plot.
flights <- flights %>%
mutate(
origin_recoded = fct_recode(origin_factor,
"Kennedy" = "JFK",
"LaGuardia" = "LGA",
"Newark" = "EWR")
)
levels(flights$origin_recoded)
## [1] "Newark" "Kennedy" "LaGuardia"
origin_recoded_table <- table(flights$origin_recoded)
origin_recoded_table
##
## Newark Kennedy LaGuardia
## 120835 111279 104662
barplot(origin_recoded_table,
main = "Number of Flights by Origin Airport (Full Names)",
xlab = "Airport",
ylab = "Number of Flights",
col = "lightblue",
border = "white")
Count missing values in dep_delay and arr_delay using colSums(is.na(flights)). Impute missing dep_delay values with 0 (assuming no delay for cancelled flights) in a new column dep_delay_imputed. Create a frequency table of dep_delay_imputed for delays between -20 and 20 minutes (use filter() to subset).
Output: NA counts, and the frequency table for imputed delays.
na_counts <- colSums(is.na(flights[, c("dep_delay", "arr_delay")]))
na_counts
## dep_delay arr_delay
## 8255 9430
flights <- flights %>%
mutate(
dep_delay_imputed = ifelse(is.na(dep_delay), 0, dep_delay)
)
delay_subset <- flights %>%
filter(dep_delay_imputed >= -20 & dep_delay_imputed <= 20)
delay_freq_table <- table(delay_subset$dep_delay_imputed)
delay_freq_table
##
## -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8
## 37 19 81 110 162 408 498 901 1594 2727 5891 7875 11791
## -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5
## 16752 20701 24821 24619 24218 21516 18813 24769 8050 6233 5450 4807 4447
## 6 7 8 9 10 11 12 13 14 15 16 17 18
## 3789 3520 3381 3062 2859 2756 2494 2414 2256 2140 2085 1873 1749
## 19 20
## 1730 1704
barplot(delay_freq_table,
main = "Frequency of Departure Delays (-20 to 20 minutes)",
xlab = "Delay (minutes)",
ylab = "Frequency",
col = "coral",
border = "white")
Reflect on the assignment: What was easy or hard about working with flight dates or missing data? How might assuming zero delay for missing values (Question 6) affect conclusions about flight punctuality? What did you learn about NYC flights in 2013? (150-200 words)
#reflection: Working with the NYC flights data set was excellent as far as learning hands-on experience with real-world data issues. It was simple enough to create datetime objects with the lubridate once I understood how to convert the integer time frame into one that is parseable with the modulo and integer division operators. The make_datetime() function is very convenient at converting single date and time elements into proper POSIXct objects.
#The handling of missing data was more challenging theoretically. While it is technically simple to impute zeros to NAs, this is not reasonable. Missing Dep_delay values are the result of cancellations of flights, not on-time departures. To regard cancellations as zero-delay flights is to artificially inflate measures of punctuality and repress the operations problems. A more courageous response would be to leave them out or study them in isolation as a distinct class of service failure.
#Handling factors was second nature—converting categorical variables like airport codes into factors and labeling them with descriptive text made data easier to read. Plots of the time series showed interesting delay trends over time.
#I learned from the 2013 data that EWR (Newark) had the highest departures, weekday flight counts were slightly higher than on weekends, and departure delays were highly variable throughout the year. This project reinforced that careful data preprocessing choices impact heavily upon analytical outcomes.