During fieldwork you each walked a transect from dune crest down into the slack, recording the species in each quadrat and measuring environmental variables.
Now comes the detective work: how do we make sense of all those numbers? How do we reduce a messy table of species × plots into something we can actually interpret?
This is where ordination comes in. Ordination methods take complex community data and project it into two dimensions so we can see the hidden gradients. In this practical, you’ll use your own data to explore:
We will compare three ordination methods. Each reduces multidimensional data into a simpler map, but they differ in assumptions:
As you look at each ordination, ask yourself: which one gives the clearest ecological story for your data?
Remember that there are different ways of setting up the data table.
Recall the difference between long and
wide data formats.
- In long format, each row records a single observation
(quadrat–species–abundance).
- In wide format, each row is a quadrat and each column
is a species, with the entries giving abundances.
Ordination methods in vegan (e.g. PCA, DCA, NMDS)
require the wide format: a quadrat × species
matrix.
Below is a sample of that matrix from your dataset (showing only a
subset of quadrats and species for clarity).
| Cynaelli | Euclrace | Helicomo | Oleaexas | Resteleo | Crasfili | Metamuri | Zalumari | |
|---|---|---|---|---|---|---|---|---|
| G01a | 1.0 | 25 | 2 | 35 | 5.0 | 0 | 0 | 0 |
| G01b | 0.0 | 45 | 0 | 20 | 5.0 | 1 | 1 | 0 |
| G01c | 0.0 | 0 | 0 | 50 | 0.0 | 0 | 2 | 1 |
| G02a | 0.3 | 0 | 1 | 13 | 0.5 | 0 | 10 | 0 |
| G02b | 0.0 | 65 | 0 | 34 | 1.0 | 0 | 1 | 0 |
| G02c | 0.0 | 0 | 0 | 20 | 0.0 | 1 | 0 | 1 |
### PCA
# Hellinger transform is often sensible for community data before PCA
dune_hel <- decostand(vegdat_wide, method = "hellinger")
pca <- rda(dune_hel)
### DCA
dca <- decorana(vegdat_wide)
### NMDS
nmds <- metaMDS(vegdat_wide,trace=0,k=5,try=50,trymax=1000)
Our sampling design followed a transect from dune crest to slack, capturing the full topographic gradient in vegetation structure. During fieldwork we observed marked shifts in composition: crest plots were distinct from slopes and slacks, with characteristic sets of species at each zone.
The first ordination axis is therefore expected to capture the dominant ecological signal: the transition in community composition from crest → slope → slack.
The second ordination axis reflects the within-zone variation among transects. While the broad crest–slope–slack pattern was consistent, each zone showed slight compositional differences, and these are expressed along the second axis.
In the ordinations below, can you see the pattern described above?
When you look at the ordination summaries above, you’ll see that each method reports different statistics. These values tell us how well the ordination represents the original data. But the catch is: each ordination type has its own measures of “goodness.”
Task:
- Go and find out what metrics are used for PCA, DCA, and
NMDS, and what they mean.
- Write a short statement for each ordination in your report, reporting
its quality using the appropriate measure(s).
Notice how there isn’t a single universal statistic across ordinations — you must use the metric that belongs to that method.
Below are the outputs from each ordination…
pca
## Call: rda(X = dune_hel)
##
## Inertia Rank
## Total 0.6238
## Unconstrained 0.6238 41
## Inertia is variance
##
## Eigenvalues for unconstrained axes:
## PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8
## 0.16916 0.12278 0.09288 0.04900 0.04357 0.02881 0.01770 0.01602
## (Showing 8 of 41 unconstrained eigenvalues)
dca
##
## Call:
## decorana(veg = vegdat_wide)
##
## Detrended correspondence analysis with 26 segments.
## Rescaling of axes with 4 iterations.
## Total inertia (scaled Chi-square): 4.3355
##
## DCA1 DCA2 DCA3 DCA4
## Eigenvalues 0.6214 0.4705 0.2947 0.3080
## Additive Eigenvalues 0.6214 0.4634 0.2922 0.2707
## Decorana values 0.6246 0.4113 0.2658 0.1531
## Axis lengths 3.9524 3.1264 2.6453 1.9409
nmds
##
## Call:
## metaMDS(comm = vegdat_wide, k = 5, try = 50, trymax = 1000, trace = 0)
##
## global Multidimensional Scaling using monoMDS
##
## Data: wisconsin(sqrt(vegdat_wide))
## Distance: bray
##
## Dimensions: 5
## Stress: 0.08698165
## Stress type 1, weak ties
## Best solution was repeated 1 time in 50 tries
## The best solution was from try 50 (random start)
## Scaling: centring, PC rotation, halfchange scaling
## Species: expanded scores based on 'wisconsin(sqrt(vegdat_wide))'
As you can see above, each ordination method has its own way of
reporting how well it represents the data.
When writing up your results, make sure you report the appropriate
statistic(s).
Use the details below to extract the necessary information from the R output above.
% variance = eigenvalue / total inertia × 100.In addition to the formal metrics, think about these:
- Number of dimensions chosen: Did you use 2, 3, or
more axes? Why?
- Interpretability: Does the ordination separate crest,
slope, and slack in a way that matches your ecological knowledge?
- Biological meaning: Even if an ordination has a
“good” metric, it must still make ecological sense.
In other words, don’t just report numbers — explain what they mean for your dune transect dataset.
A raw ordination plot of points is often hard to interpret on its own. To make patterns clearer, ecologists overlay group structures that summarise how plots relate to one another. Common options include:
These tools make ordinations far more useful by helping us see whether groups of plots (e.g. crest, slope, slack) are distinct, overlapping, or highly variable. In other words, ordination visualisation usually requires adding these layers — the raw scatter of points alone rarely tells the full story.
Below are the ordination plots with convex
hulls.
A convex hull is the smallest polygon that encloses a set of points,
helping us visualise the overall spread of quadrats belonging to the
same habitat group.
For this analysis, quadrats were grouped as follows:
Because the transects were not identical, quadrats 4 and 9–11 were
excluded.
This provides the clearest representation of the crest, slope, and slack
habitats.
In addition to convex hulls, another useful way to show group
structure in ordinations is with ordispiders.
An ordispider draws straight lines from the group
centroid (the average position of all plots in that group) to
each of the individual plots.
This allows you to see:
In ecological terms, a shorter set of spider lines means the group is relatively homogeneous in species composition, while longer lines suggest more variation within that habitat type.
Ordinations show patterns — but what drives them? This is where your environmental measurements come in.
Here we use the envfit()
function to see which environmental variables are correlated with the
ordination axes. However, just a note about the output of the
envfit() function — what you see in the printed output of
envfit() are only the direction cosines, which tell you the
direction of the arrow in ordination space if its length were fixed at
1. However, these raw values are not what gets plotted. To draw the
arrows, the values are first adjusted by the strength of the fit: the
arrow is multiplied by the square root of R² so that strong
predictors appear longer and weak predictors shorter. After that, all
arrows are further adjusted by a common scaling constant so that
they fit neatly inside the ordination plot. This final scaling does
not change their relative sizes, only their absolute placement in the
figure. Therefore, when plotting, what you need to use are these
adjusted coordinates—direction cosines scaled by √R² and then rescaled
by the plotting function—rather than the raw printed values. Thus, when
you interpret the arrows on an ordination, remember that they are
rescaled based on their R² values.
One of the simplest but most powerful variables you measured was the height of each quadrat above the dune slacks. This captures the key environmental gradient from the wettest slacks, up the slopes, and onto the dry dune crests — the same gradient you observed in the field.
To illustrate how ordinations link environmental data to species composition, we plot this variable in two complementary ways:
envfit — The vector points
in the direction of maximum correlation between height and the
ordination axes, with its length reflecting the strength of the
relationship.By combining the visual gradient of the raw data with the summary arrow from the environmental fit, you can see both the underlying measurements and their statistical interpretation. This demonstrates what an environmental arrow means: it is not abstract, but a concise summary of real field data.
It is important to note that not all environmental variables will align with the ordination axes. Some may show little or no pattern across the plots, meaning they are not strongly related to the gradients captured in the ordination. For example, soil pH in this system ranges only slightly (7.8–8.4) and shows almost no meaningful separation between crest, slope, and slack quadrats.
We first explore soil pH (ranging from 7.8 to 8.4) by overlaying it on the ordination diagrams and by comparing crest, slope, and slack quadrats using box-and-whisker plots.
Both approaches show that pH does not form a strong gradient across the transects. While the slacks appear to be slightly less alkaline than the crest and slope quadrats, this difference is very small and not biologically meaningful.
In other words, soil pH is relatively uniform across the dune system, and is unlikely to be a major driver of the observed vegetation patterns compared to other environmental factors.
In contrast to pH, soil moisture percentage shows a
much clearer trend across the transects.
When plotted onto the ordination diagrams, soil moisture increases
steadily from the drier dune crests, through the
intermediate slopes, and into the wetter dune
slacks.
This pattern is also visible in the box-and-whisker plots: crest
quadrats have the lowest moisture values, slope quadrats are
intermediate, and slack quadrats are the wettest.
These differences are ecologically meaningful, as soil
water availability is a major factor shaping species distributions and
vegetation structure in dune systems.
When many variables are fitted, interpret vectors systematically:
p < 0.05, BH-adjusted). Show
the rest faintly or hide.Remember that there are two approaches to using vegetation and environmental data in ordinations: the indirect comparison where (typically) the ordination is generated from the vegetation data and the environmental variables are correlated with each axis in the ordination OR the direct comparison where the vegetation and environmental variables are both used in concert to generate the ordination. Here I show the first approach.
Each ordination can be correlated with the environmental variables using the envfit() function. Below is the output of the this indirect comparison. To interpret these, focus on three columns:
Use the numbers in the tables below to write short interpretations for each ordination.
## [1] "Output from the envfit() function"
| PC1 | PC2 | r2 | p | sig | PC1_rescaled | PC2_rescaled | |
|---|---|---|---|---|---|---|---|
| Soil_pH | -0.9285 | -0.3714 | 0.146 | 0.036 |
|
-0.3549 | -0.142 |
| OrgContent% | 0.8394 | -0.5435 | 0.144 | 0.033 |
|
0.319 | -0.2065 |
| SoilMoisture_% | 0.9901 | -0.1405 | 0.326 | 0.001 | *** | 0.5654 | -0.0802 |
| HeightAboveLowestPoint_m | -0.9629 | 0.2700 | 0.763 | 0.001 | *** | -0.8412 | 0.2359 |
| LightInfiltation | -0.8098 | 0.5867 | 0.069 | 0.224 | -0.2128 | 0.1542 | |
| CanopyCover | -0.0779 | -0.9970 | 0.030 | 0.514 | -0.0134 | -0.1722 |
| DCA1 | DCA2 | r2 | p | sig | DCA1_rescaled | DCA2_rescaled | |
|---|---|---|---|---|---|---|---|
| Soil_pH | -0.9670 | -0.2547 | 0.106 | 0.085 | . | -0.3149 | -0.0829 |
| OrgContent% | 0.9989 | -0.0466 | 0.180 | 0.020 |
|
0.4234 | -0.0197 |
| SoilMoisture_% | 0.8117 | 0.5841 | 0.285 | 0.003 | ** | 0.4334 | 0.3118 |
| HeightAboveLowestPoint_m | -0.9980 | 0.0626 | 0.675 | 0.001 | *** | -0.82 | 0.0514 |
| LightInfiltation | -0.7770 | -0.6295 | 0.014 | 0.746 | -0.0922 | -0.0747 | |
| CanopyCover | -0.6717 | 0.7409 | 0.035 | 0.476 | -0.1257 | 0.1387 |
| DCA1 | DCA2 | r2 | p | sig | DCA1_rescaled | DCA2_rescaled | |
|---|---|---|---|---|---|---|---|
| Soil_pH | -0.9670 | -0.2547 | 0.106 | 0.085 | . | -0.3149 | -0.0829 |
| OrgContent% | 0.9989 | -0.0466 | 0.180 | 0.020 |
|
0.4234 | -0.0197 |
| SoilMoisture_% | 0.8117 | 0.5841 | 0.285 | 0.003 | ** | 0.4334 | 0.3118 |
| HeightAboveLowestPoint_m | -0.9980 | 0.0626 | 0.675 | 0.001 | *** | -0.82 | 0.0514 |
| LightInfiltation | -0.7770 | -0.6295 | 0.014 | 0.746 | -0.0922 | -0.0747 | |
| CanopyCover | -0.6717 | 0.7409 | 0.035 | 0.476 | -0.1257 | 0.1387 |
In this section we focus on the species (the “descriptors”) in ordination space—how they are plotted, what their positions mean, and how to interpret them.
In the first tab, the ordination is shown with species points added (green dots with names, except where labels would be too crowded). The quadrats are shown as grey dots in the background for context.
In the next tab, I present the results of an envfit() analysis, which tests how strongly each species correlates with the ordination axes.
In the following tab, the ordination is also displayed with species coloured, to aid interpretation, according to whether their correlation is statistically significant (here, p < 0.10) or not.
Task: Find species in the ordination plots and compare their placement with their statistics in the envfit table. Which species positions are strongly supported by the data, and which are not?
| Species | PC1 | PC2 | r2 | p_value | sig_codes |
|---|---|---|---|---|---|
| Anthaeth | 0.9215 | -0.3885 | 0.01 | 0.873 | |
| Aspaafri | -0.3082 | -0.9513 | 0.04 | 0.466 | |
| Carpdeli | 0.1547 | -0.9880 | 0.02 | 0.654 | |
| Chaecamp | 0.8044 | -0.5941 | 0.06 | 0.235 | |
| Chendiff | -0.8016 | 0.5979 | 0.07 | 0.216 | |
| Chirbacc | 0.6287 | 0.7777 | 0.10 | 0.063 | . |
| Colepulc | 0.3459 | -0.9383 | 0.46 | 0.001 | *** |
| Colpcomp | -0.9948 | -0.1017 | 0.04 | 0.444 | |
| Crasfili | -0.6696 | 0.7427 | 0.00 | 0.958 | |
| Crasglom | -0.1248 | -0.9922 | 0.05 | 0.364 | |
| Cynaelli | -0.7919 | 0.6106 | 0.11 | 0.042 |
|
| Ehrherec | -0.9501 | -0.3119 | 0.05 | 0.313 | |
| Elegmicr | 0.9387 | -0.3448 | 0.02 | 0.715 | |
| Eleolimo | -0.8020 | 0.5974 | 0.16 | 0.024 |
|
| Euclrace | -0.8983 | 0.4395 | 0.15 | 0.025 |
|
| Feliechi | -0.8606 | 0.5093 | 0.10 | 0.100 | . |
| Felilati | -0.9387 | -0.3449 | 0.06 | 0.234 | |
| Ficibulb | -0.9742 | 0.2259 | 0.04 | 0.500 | |
| Ficicape | 0.9791 | -0.2035 | 0.08 | 0.185 | |
| Ficiramo | 0.5149 | -0.8572 | 0.11 | 0.070 | . |
| Helicomo | -0.8215 | 0.5703 | 0.11 | 0.053 | . |
| Helitere | 0.7862 | -0.6180 | 0.02 | 0.801 | |
| Indiglau | 0.9966 | -0.0820 | 0.03 | 0.658 | |
| Laurtetr | -0.5844 | -0.8115 | 0.02 | 0.625 | |
| Meseaito | 0.4664 | -0.8846 | 0.04 | 0.563 | |
| Metamuri | -0.2122 | -0.9772 | 0.36 | 0.001 | *** |
| Morequer | -0.0294 | 0.9996 | 0.17 | 0.013 |
|
| Oleaexas | -0.9145 | 0.4046 | 0.77 | 0.001 | *** |
| Oxaldepr | -0.9742 | 0.2259 | 0.04 | 0.500 | |
| Oxalpunc | -0.9793 | 0.2024 | 0.04 | 0.527 | |
| Passcory | 0.9101 | 0.4143 | 0.34 | 0.001 | *** |
| Passrigi | 0.7986 | 0.6019 | 0.05 | 0.390 | |
| Phyleric | 0.7983 | 0.6022 | 0.54 | 0.001 | *** |
| Plecserp | -0.9977 | 0.0671 | 0.06 | 0.255 | |
| Rapagill | -0.8643 | -0.5030 | 0.04 | 0.494 | |
| Resteleo | 0.8623 | 0.5063 | 0.15 | 0.013 |
|
| Robsmari | -0.1595 | -0.9872 | 0.05 | 0.400 | |
| Searcren | 0.2007 | -0.9797 | 0.06 | 0.257 | |
| Searglau | -0.7441 | 0.6680 | 0.01 | 0.884 | |
| Searlaev | 0.1644 | -0.9864 | 0.04 | 0.493 | |
| Seneangu | 0.6591 | 0.7520 | 0.06 | 0.258 | |
| Senepurp | 0.8168 | -0.5769 | 0.05 | 0.329 | |
| Sileundu | -0.8020 | 0.5974 | 0.16 | 0.024 |
|
| Vellvell | -0.0106 | -0.9999 | 0.06 | 0.271 | |
| Zalumari | -0.8398 | 0.5429 | 0.17 | 0.024 |
|
| Species | DCA1 | DCA2 | r2 | p_value | sig_codes |
|---|---|---|---|---|---|
| Anthaeth | 0.5689 | -0.8224 | 0.03 | 0.546 | |
| Aspaafri | -0.3820 | 0.9242 | 0.04 | 0.419 | |
| Carpdeli | 0.2325 | -0.9726 | 0.08 | 0.204 | |
| Chaecamp | 0.9426 | 0.3338 | 0.03 | 0.621 | |
| Chendiff | -0.3724 | -0.9281 | 0.06 | 0.244 | |
| Chirbacc | 0.9362 | 0.3515 | 0.03 | 0.626 | |
| Colepulc | 0.5429 | -0.8398 | 0.10 | 0.106 | |
| Colpcomp | -0.9561 | -0.2932 | 0.04 | 0.378 | |
| Crasfili | 0.1836 | -0.9830 | 0.09 | 0.131 | |
| Crasglom | -0.3008 | 0.9537 | 0.15 | 0.042 |
|
| Cynaelli | -0.9983 | 0.0582 | 0.05 | 0.342 | |
| Ehrherec | -0.9351 | 0.3543 | 0.08 | 0.143 | |
| Elegmicr | 0.0746 | 0.9972 | 0.16 | 0.018 |
|
| Eleolimo | -0.6419 | -0.7668 | 0.10 | 0.111 | |
| Euclrace | -0.9551 | 0.2964 | 0.19 | 0.008 | ** |
| Feliechi | -0.6947 | -0.7193 | 0.07 | 0.228 | |
| Felilati | -0.5890 | 0.8081 | 0.05 | 0.348 | |
| Ficibulb | -0.7555 | 0.6551 | 0.02 | 0.745 | |
| Ficicape | 0.9191 | -0.3941 | 0.07 | 0.242 | |
| Ficiramo | 0.9977 | -0.0674 | 0.02 | 0.710 | |
| Helicomo | -0.9949 | 0.1008 | 0.05 | 0.332 | |
| Helitere | 0.3178 | 0.9481 | 0.08 | 0.152 | |
| Indiglau | 0.6858 | -0.7278 | 0.04 | 0.560 | |
| Laurtetr | 0.0540 | -0.9985 | 0.25 | 0.004 | ** |
| Meseaito | 0.9157 | -0.4018 | 0.01 | 0.890 | |
| Metamuri | -0.3261 | 0.9453 | 0.70 | 0.001 | *** |
| Morequer | 0.2273 | -0.9738 | 0.00 | 0.989 | |
| Oleaexas | -0.7837 | -0.6211 | 0.68 | 0.001 | *** |
| Oxaldepr | -0.7555 | 0.6551 | 0.02 | 0.745 | |
| Oxalpunc | -0.4677 | -0.8839 | 0.06 | 0.244 | |
| Passcory | 0.7569 | -0.6536 | 0.36 | 0.001 | *** |
| Passrigi | 0.9272 | 0.3745 | 0.06 | 0.259 | |
| Phyleric | 0.9516 | 0.3074 | 0.46 | 0.001 | *** |
| Plecserp | -0.9405 | 0.3398 | 0.10 | 0.100 | . |
| Rapagill | -0.2108 | -0.9775 | 0.07 | 0.207 | |
| Resteleo | 0.9996 | -0.0289 | 0.12 | 0.061 | . |
| Robsmari | -0.3271 | 0.9450 | 0.12 | 0.079 | . |
| Searcren | -0.1600 | 0.9871 | 0.03 | 0.555 | |
| Searglau | 0.2310 | -0.9729 | 0.01 | 0.807 | |
| Searlaev | -0.2346 | 0.9721 | 0.13 | 0.040 |
|
| Seneangu | 0.7000 | 0.7142 | 0.10 | 0.071 | . |
| Senepurp | 0.5678 | 0.8232 | 0.03 | 0.529 | |
| Sileundu | -0.6419 | -0.7668 | 0.10 | 0.111 | |
| Vellvell | -0.2669 | 0.9637 | 0.13 | 0.038 |
|
| Zalumari | -0.6024 | -0.7982 | 0.12 | 0.066 | . |
| Species | NMDS1 | NMDS2 | r2 | p_value | sig_codes |
|---|---|---|---|---|---|
| Anthaeth | 0.1733 | 0.9849 | 0.03 | 0.605 | |
| Aspaafri | -0.9869 | 0.1613 | 0.00 | 0.969 | |
| Carpdeli | -0.0750 | 0.9972 | 0.07 | 0.215 | |
| Chaecamp | 0.7713 | 0.6365 | 0.06 | 0.252 | |
| Chendiff | -0.9636 | -0.2672 | 0.09 | 0.186 | |
| Chirbacc | 0.5624 | -0.8269 | 0.10 | 0.136 | |
| Colepulc | 0.1962 | 0.9806 | 0.51 | 0.001 | *** |
| Colpcomp | -0.9588 | 0.2840 | 0.05 | 0.296 | |
| Crasfili | -0.8763 | 0.4817 | 0.02 | 0.616 | |
| Crasglom | -0.1369 | 0.9906 | 0.01 | 0.804 | |
| Cynaelli | -0.4296 | -0.9030 | 0.15 | 0.018 |
|
| Ehrherec | -0.8462 | 0.5328 | 0.04 | 0.412 | |
| Elegmicr | 0.8624 | -0.5063 | 0.06 | 0.292 | |
| Eleolimo | -0.7035 | -0.7107 | 0.18 | 0.020 |
|
| Euclrace | -0.8387 | -0.5445 | 0.12 | 0.069 | . |
| Feliechi | -0.4515 | -0.8923 | 0.10 | 0.081 | . |
| Felilati | -0.4564 | -0.8898 | 0.08 | 0.138 | |
| Ficibulb | -0.2694 | -0.9630 | 0.13 | 0.031 |
|
| Ficicape | 0.8111 | 0.5850 | 0.11 | 0.091 | . |
| Ficiramo | 0.4319 | 0.9019 | 0.11 | 0.084 | . |
| Helicomo | -0.3983 | -0.9172 | 0.18 | 0.014 |
|
| Helitere | 0.9196 | 0.3928 | 0.04 | 0.476 | |
| Indiglau | 0.9492 | 0.3146 | 0.03 | 0.588 | |
| Laurtetr | -0.4319 | 0.9019 | 0.19 | 0.012 |
|
| Meseaito | 0.4748 | 0.8801 | 0.03 | 0.584 | |
| Metamuri | -0.2095 | 0.9778 | 0.08 | 0.160 | |
| Morequer | 0.1112 | -0.9938 | 0.32 | 0.001 | *** |
| Oleaexas | -0.9153 | -0.4027 | 0.64 | 0.001 | *** |
| Oxaldepr | -0.2694 | -0.9630 | 0.13 | 0.031 |
|
| Oxalpunc | -0.8600 | 0.5103 | 0.05 | 0.367 | |
| Passcory | 0.9807 | -0.1955 | 0.15 | 0.029 |
|
| Passrigi | 0.8589 | -0.5122 | 0.06 | 0.276 | |
| Phyleric | 0.8239 | -0.5667 | 0.59 | 0.001 | *** |
| Plecserp | -0.9995 | 0.0323 | 0.04 | 0.463 | |
| Rapagill | -0.7081 | 0.7061 | 0.10 | 0.114 | |
| Resteleo | 0.8486 | -0.5290 | 0.10 | 0.102 | |
| Robsmari | 0.0981 | 0.9952 | 0.00 | 0.924 | |
| Searcren | 0.2664 | 0.9639 | 0.08 | 0.132 | |
| Searglau | -0.9524 | 0.3048 | 0.02 | 0.704 | |
| Searlaev | 0.3940 | 0.9191 | 0.01 | 0.846 | |
| Seneangu | 0.6876 | -0.7261 | 0.11 | 0.108 | |
| Senepurp | 0.6057 | 0.7957 | 0.09 | 0.113 | |
| Sileundu | -0.7035 | -0.7107 | 0.18 | 0.020 |
|
| Vellvell | 0.0516 | 0.9987 | 0.02 | 0.744 | |
| Zalumari | -0.9625 | -0.2713 | 0.22 | 0.002 | ** |
A common misconception is that the location of a species
point in the ordination plot automatically indicates its
importance.
This is not the case.
Species scores (the positions in the ordination diagram) show the average composition-weighted location of that species relative to the quadrats. They tell you where a species tends to occur, but not how strongly it drives the overall pattern.
Significance and r² values from
envfit quantify how well a species’ distribution aligns
with the main gradients captured by the ordination axes.
In other words:
- Position = where the species occurs.
- Significance (r², p-value) = whether that species explains the
main gradients.
Think of an ordination like a lecture hall: two students might be sitting right next to each other. One is paying close attention and contributes insightful questions that shape the discussion (high r², significant). The other is catching up on their social media and not paying attention, present but not really influencing the direction of the lecture (low r², not significant).
The same applies to species in ordination space — proximity alone doesn’t tell you their importance. What matters is whether their pattern of occurrence actually aligns with the major ecological gradients captured by the analysis.
To deepen your understanding of species points in ordination space, examine the plots below.
Task:
1. Compare the location of the species coordinate (diamond) to the
distribution of its quadrats.
- Does the coordinate lie near the centre of where the species is most
abundant?
- Can you find examples where two species have nearby coordinates, but
very different abundance patterns?
envfit results table
for species.
This exercise will help you connect the visualisation of species
occurrence with the statistical tests that quantify their importance in
shaping ordination patterns.
:::
Your final task is to write up the Methods,
Results, and a short Discussion for
this practical.
Use this document as your data source: you may quote numbers from the
summaries, copy plots, or crop figures to support your points. You must
generate a hand-drawn ordination, with some grouping of the plots
(e.g. by zone), include the environmental variables and some of the
important species.
Numbers and plots are essential, but your write-up should explain their meaning in plain language. Focus on telling the ecological story of the dune system rather than just repeating output.
Below are the Eigenvalues for each of the ordinations - these can be used to draw your ordination on graph paper. You can find the environmental variables above.
## PC1 PC2 score label
## Cynaelli -0.0200163212 0.0122333129 species Cynaelli
## Euclrace -0.2217770054 0.0518482148 species Euclrace
## Helicomo -0.0301821607 0.0163499716 species Helicomo
## Oleaexas -0.8234238574 0.3252109789 species Oleaexas
## Resteleo 0.3058075545 0.1784317272 species Resteleo
## Crasfili -0.0450191209 0.0304080975 species Crasfili
## Metamuri -0.1868041062 -0.5118096665 species Metamuri
## Zalumari -0.0313499868 0.0205399818 species Zalumari
## Felilati -0.0246643774 -0.0094197933 species Felilati
## Ficibulb -0.0052831656 0.0012251455 species Ficibulb
## Morequer 0.0146234368 0.1326210563 species Morequer
## Oxaldepr -0.0052831656 0.0012251455 species Oxaldepr
## Ehrherec -0.0368930622 -0.0140418365 species Ehrherec
## Ficiramo 0.0360707978 -0.0684127446 species Ficiramo
## Plecserp -0.0466193709 0.0034895479 species Plecserp
## Chendiff -0.0219587701 0.0163802918 species Chendiff
## Eleolimo -0.0283304878 0.0211072620 species Eleolimo
## Laurtetr -0.0670316385 -0.0367437034 species Laurtetr
## Sileundu -0.0283304878 0.0211072620 species Sileundu
## Aspaafri -0.0034907596 -0.0084995666 species Aspaafri
## Colepulc 0.2458373368 -0.6285455413 species Colepulc
## Rapagill -0.0436590780 -0.0458525139 species Rapagill
## Searcren 0.0175783876 -0.0729965456 species Searcren
## Colpcomp -0.0336854879 -0.0033937529 species Colpcomp
## Feliechi -0.0264753556 0.0161064738 species Feliechi
## Elegmicr 0.0199803322 -0.0007816465 species Elegmicr
## Ficicape 0.0910298183 -0.0454766890 species Ficicape
## Helitere 0.0581534643 -0.0175554642 species Helitere
## Searglau -0.0282450074 0.0067492260 species Searglau
## Chaecamp 0.0259134297 -0.0204614568 species Chaecamp
## Carpdeli 0.0289666869 -0.0724898761 species Carpdeli
## Robsmari -0.0019036418 -0.0117792914 species Robsmari
## Seneangu 0.0104359170 0.0078245322 species Seneangu
## Senepurp 0.0365235835 -0.0222808968 species Senepurp
## Oxalpunc -0.0095469850 0.0019727089 species Oxalpunc
## Crasglom -0.0006063342 -0.0048196664 species Crasglom
## Searlaev 0.0239906226 -0.0199646178 species Searlaev
## Vellvell 0.0009322704 -0.0094443760 species Vellvell
## Phyleric 0.4805481766 0.3458423759 species Phyleric
## Anthaeth 0.0255806336 -0.0038843891 species Anthaeth
## Meseaito 0.0144662185 -0.0105177172 species Meseaito
## Passcory 0.4839361079 0.2629130655 species Passcory
## Passrigi 0.0249087580 0.0187744069 species Passrigi
## Chirbacc 0.0218529116 0.0270314777 species Chirbacc
## Indiglau 0.0194708326 -0.0016010264 species Indiglau
## G01a -0.4694035040 0.4368166183 sites G01a
## G01b -0.4033405963 0.3255381586 sites G01b
## G01c -0.6034743248 0.3416300244 sites G01c
## G02a -0.4631386158 0.1074000378 sites G02a
## G02b -0.4523188431 0.3020773497 sites G02b
## G02c -0.4880698957 0.3640790104 sites G02c
## G03a -0.2525257182 -0.3477711189 sites G03a
## G03b -0.3199768795 -0.0667022025 sites G03b
## G03c -0.5407743749 0.4022937696 sites G03c
## G04a -0.1194261483 -0.4117270293 sites G04a
## G04b -0.2711685627 -0.1405550246 sites G04b
## G04c -0.5349996716 0.4619885750 sites G04c
## G05a -0.1778539841 -0.4564240386 sites G05a
## G05b -0.2830056006 -0.2608008476 sites G05b
## G05c -0.3210755049 -0.0085646048 sites G05c
## G06a -0.0802862075 -0.4967923367 sites G06a
## G06b 0.1641940303 -0.3745506364 sites G06b
## G06c -0.4331463213 0.0895017213 sites G06c
## G07a -0.0635301357 -0.5049922725 sites G07a
## G07b 0.0662921977 -0.3860816498 sites G07b
## G07c -0.3080852102 -0.0760138628 sites G07c
## G08a 0.2879721455 -0.2777453064 sites G08a
## G08b 0.1441653410 -0.4897400075 sites G08b
## G08c -0.2666601243 -0.0900851295 sites G08c
## G09a 0.1086999516 -0.5562885943 sites G09a
## G09b 0.1879293568 -0.5057688607 sites G09b
## G09c 0.1036709479 -0.3688599558 sites G09c
## G10a 0.1737157381 -0.1753208717 sites G10a
## G10b 0.1709060814 -0.4110034565 sites G10b
## G10c 0.1325869984 -0.1100504058 sites G10c
## G11a 0.3827224520 0.4898223675 sites G11a
## G11b 0.3512254867 -0.0706180892 sites G11b
## G11c 0.1724230672 0.0319551818 sites G11c
## G12a 0.3914813559 0.2950701225 sites G12a
## G12b 0.4160485603 0.2401376581 sites G12b
## G12c 0.1762481907 0.0572412938 sites G12c
## G13a 0.4644041013 0.5654986648 sites G13a
## G13b 0.4583860873 0.2668244272 sites G13b
## G13c -0.0001694069 0.2194905921 sites G13c
## G14a 0.4507263144 0.5575366138 sites G14a
## G14b 0.3939969130 0.0410336492 sites G14b
## G14c 0.3950644111 -0.0324849255 sites G14c
## G15a 0.4635737935 0.5776036473 sites G15a
## G15b 0.5074633511 0.2453647186 sites G15b
## G15c 0.2885327569 0.2000370255 sites G15c
## DCA1 DCA2 DCA3 DCA4 score label
## G01a -1.51008115 -0.28549004 0.25883489 0.004467390 sites G01a
## G01b -1.36549587 -0.01442174 -0.12932457 0.537764637 sites G01b
## G01c -1.83982916 -0.89192868 0.60036332 -0.620788514 sites G01c
## G02a -1.25280421 0.36652957 0.57023718 -0.041320316 sites G02a
## G02b -1.53251208 -0.04978933 -0.22322233 0.416876757 sites G02b
## G02c -1.58805938 -1.53538592 0.41784973 -0.656345477 sites G02c
## G03a -0.66075013 0.56938237 0.20389502 0.273624682 sites G03a
## G03b -1.00161406 0.15632816 0.04946374 0.349956877 sites G03b
## G03c -1.51234070 -0.63919442 0.67048763 -0.800236188 sites G03c
## G04a -0.42460118 0.75285781 -0.02771723 0.431117051 sites G04a
## G04b -0.58145061 -0.39414278 -0.29884677 -0.424400350 sites G04b
## G04c -1.70205742 -0.88388425 0.54694311 -0.684448336 sites G04c
## G05a -0.70003921 1.53350281 0.28058259 0.890993017 sites G05a
## G05b -0.65888861 -0.04193560 -0.19433034 -0.115237098 sites G05b
## G05c -0.90366175 -0.76803811 -0.58887608 0.322846352 sites G05c
## G06a -0.61313910 1.49018241 0.27586756 0.861274685 sites G06a
## G06b 0.25069049 -0.09256751 -0.21059449 -0.047963472 sites G06b
## G06c -1.21997963 -1.00216872 0.45726691 -0.718295527 sites G06c
## G07a -0.53295542 1.59098332 0.03695420 0.957793004 sites G07a
## G07b 0.01246548 0.84524263 0.25576690 0.635456744 sites G07b
## G07c -0.68630128 -0.78576952 -0.23065288 -0.416323633 sites G07c
## G08a 0.71491391 -0.06317763 -0.59810533 -0.481342131 sites G08a
## G08b 0.17036319 0.40791564 -0.03321078 -0.029153427 sites G08b
## G08c -0.62076265 -0.92249581 0.48780259 -0.814104404 sites G08c
## G09a 0.04900123 0.47487373 -0.13532818 0.084376340 sites G09a
## G09b 0.39537914 -0.16909151 -0.55111754 -0.505573397 sites G09b
## G09c 0.07423195 -1.12674002 -0.11121926 -0.627211349 sites G09c
## G10a 0.93362042 1.35843259 -0.60686581 -0.983120035 sites G10a
## G10b 0.43415326 -0.05611190 -0.88068384 -0.972582574 sites G10b
## G10c 0.19064304 -0.75161200 0.02402706 -0.372104338 sites G10c
## G11a 2.11252709 0.90518443 0.20709554 -0.180296559 sites G11a
## G11b 0.68317377 0.16091148 -0.16998111 -0.038054146 sites G11b
## G11c 0.51766195 -0.88448917 -0.82097590 0.696502573 sites G11c
## G12a 2.07563424 0.71222714 0.09396167 -0.045832684 sites G12a
## G12b 0.96594339 0.23552736 0.01339895 0.350196407 sites G12b
## G12c 0.54717394 -0.40307331 0.18296724 0.031900916 sites G12c
## G13a 1.50071024 0.16305080 0.05098636 0.473416654 sites G13a
## G13b 1.29161637 0.16290802 -0.17107125 0.024443286 sites G13b
## G13c 0.44739324 -0.05840527 1.76457009 -0.126884399 sites G13c
## G14a 1.52659582 0.50645599 0.87187806 0.314056947 sites G14a
## G14b 0.85732190 -0.23549789 -0.33895469 0.313035189 sites G14b
## G14c 0.98710545 -0.41394565 -0.08652723 0.316843192 sites G14c
## G15a 1.84102647 0.68127874 0.33892391 -0.002985912 sites G15a
## G15b 1.47908982 -0.10910645 -0.31791602 0.249942074 sites G15b
## G15c 1.04633618 -0.33944562 0.08417398 0.586155769 sites G15c
## Cynaelli -2.22061675 1.13283129 0.90449756 -1.203942654 species Cynaelli
## Euclrace -1.44292843 0.35131392 -0.61053830 1.022587799 species Euclrace
## Helicomo -2.08914942 1.24849657 0.81020961 -1.083248359 species Helicomo
## Oleaexas -1.86827232 -1.00417006 0.61811028 -0.696148245 species Oleaexas
## Resteleo 1.03522796 0.66399141 1.74109068 0.494943103 species Resteleo
## Crasfili -0.43731770 -1.87346150 -3.21252933 3.086550012 species Crasfili
## Metamuri -0.75729848 1.78941423 0.30772438 1.064302272 species Metamuri
## Zalumari -2.58273260 -0.64254504 0.29829343 -0.222983544 species Zalumari
## Felilati -1.44764796 1.54246050 0.69684527 0.475745533 species Felilati
## Ficibulb -1.89996223 1.75256191 0.92949217 0.443512250 species Ficibulb
## Morequer 0.42368405 0.80479094 1.00955783 -1.058776373 species Morequer
## Oxaldepr -1.89996223 1.75256191 0.92949217 0.443512250 species Oxaldepr
## Ehrherec -1.31820593 0.07571668 -0.80645126 0.282269722 species Ehrherec
## Ficiramo 0.59098861 0.51931137 -1.42366061 -1.518962861 species Ficiramo
## Plecserp -1.72152676 0.47573435 -0.58491185 0.487879818 species Plecserp
## Chendiff -2.37606079 -1.90812609 0.18107191 -1.114725732 species Chendiff
## Eleolimo -2.37868159 -1.00997435 0.92577733 -1.665842695 species Eleolimo
## Laurtetr -0.72751562 -2.68382845 0.33809220 -0.700790189 species Laurtetr
## Sileundu -2.37868159 -1.00997435 0.92577733 -1.665842695 species Sileundu
## Aspaafri -0.82693776 1.05319517 -0.31066790 0.653685063 species Aspaafri
## Colepulc 0.35917412 -0.31711081 -0.65628929 -0.640703745 species Colepulc
## Rapagill -0.86458300 -1.69539442 1.75613278 -1.387655435 species Rapagill
## Searcren 0.01398176 1.14049841 0.54859387 1.376430480 species Searcren
## Colpcomp -1.54348137 -1.44378811 -0.94781658 1.975344451 species Colpcomp
## Feliechi -1.80535401 0.42174555 0.21066243 -2.176396570 species Feliechi
## Elegmicr 1.28299411 1.44845153 0.15502126 0.909961178 species Elegmicr
## Ficicape 0.98873481 -0.42323948 -0.91681030 -0.857364330 species Ficicape
## Helitere 1.21299438 1.92093207 -1.26809682 -2.564618252 species Helitere
## Searglau -0.01081549 -1.14275568 2.90772605 -1.257981266 species Searglau
## Chaecamp 0.80205525 0.74846433 -1.04797918 -1.430817172 species Chaecamp
## Carpdeli 0.25860201 -1.40631444 -2.01758975 1.023272822 species Carpdeli
## Robsmari -0.88087959 2.11642790 0.52386627 1.630425732 species Robsmari
## Seneangu 2.92183030 1.17861141 0.47378837 0.447465490 species Seneangu
## Senepurp 0.80350301 0.81838585 0.54726321 1.282371191 species Senepurp
## Oxalpunc -1.94584823 -1.73934099 1.25889450 -2.021922269 species Oxalpunc
## Crasglom -0.82134091 2.21360872 -0.57025963 1.939519980 species Crasglom
## Searlaev 0.00343848 1.92335224 -0.84440867 1.495944394 species Searlaev
## Vellvell -0.57875262 2.02900825 -0.99625239 1.596481015 species Vellvell
## Phyleric 2.43578890 0.91789158 -0.12266858 -0.289360668 species Phyleric
## Anthaeth 0.73294762 -1.25733516 2.19254063 -0.655617289 species Anthaeth
## Meseaito 0.80389742 0.59611511 -3.20037026 -3.481115156 species Meseaito
## Passcory 1.52197698 -0.62597586 -0.26580519 1.132371830 species Passcory
## Passrigi 3.29770645 0.41599051 -0.19417859 0.272916321 species Passrigi
## Chirbacc 2.41311254 0.82592600 1.73134572 0.874092377 species Chirbacc
## Indiglau 1.44921928 -1.87864762 0.75247699 0.812753165 species Indiglau
## weight
## G01a 68.00
## G01b 72.00
## G01c 53.00
## G02a 28.00
## G02b 112.00
## G02c 36.00
## G03a 39.85
## G03b 99.00
## G03c 65.00
## G04a 81.70
## G04b 100.00
## G04c 81.00
## G05a 96.30
## G05b 108.00
## G05c 66.00
## G06a 71.29
## G06b 88.00
## G06c 75.00
## G07a 80.00
## G07b 96.00
## G07c 100.00
## G08a 84.50
## G08b 112.00
## G08c 90.00
## G09a 79.70
## G09b 88.00
## G09c 51.00
## G10a 68.00
## G10b 120.00
## G10c 90.00
## G11a 61.50
## G11b 82.00
## G11c 108.00
## G12a 45.00
## G12b 90.00
## G12c 54.00
## G13a 40.00
## G13b 89.00
## G13c 103.00
## G14a 46.50
## G14b 102.00
## G14c 75.00
## G15a 60.00
## G15b 77.00
## G15c 105.00
## Cynaelli 1.30
## Euclrace 253.50
## Helicomo 3.10
## Oleaexas 552.00
## Resteleo 286.60
## Crasfili 26.00
## Metamuri 408.00
## Zalumari 2.00
## Felilati 2.00
## Ficibulb 0.10
## Morequer 25.00
## Oxaldepr 0.10
## Ehrherec 18.00
## Ficiramo 33.00
## Plecserp 18.00
## Chendiff 2.00
## Eleolimo 2.00
## Laurtetr 72.00
## Sileundu 2.00
## Aspaafri 0.55
## Colepulc 927.00
## Rapagill 29.50
## Searcren 54.80
## Colpcomp 12.00
## Feliechi 4.00
## Elegmicr 6.00
## Ficicape 51.00
## Helitere 43.60
## Searglau 35.50
## Chaecamp 10.00
## Carpdeli 31.90
## Robsmari 1.10
## Seneangu 1.69
## Senepurp 16.00
## Oxalpunc 1.00
## Crasglom 0.20
## Searlaev 15.10
## Vellvell 0.60
## Phyleric 234.10
## Anthaeth 12.50
## Meseaito 7.50
## Passcory 322.00
## Passrigi 5.00
## Chirbacc 3.00
## Indiglau 5.00
## NMDS1 NMDS2 NMDS3 NMDS4 NMDS5
## G01a -0.639982618 -0.781410539 -0.10083509 -0.539644370 0.283578006
## G01b -0.610817674 -0.585163695 -0.08889618 -0.413708860 -0.166155360
## G01c -1.323625487 -0.256640852 0.38800166 0.123948852 -0.452377201
## G02a -0.437498735 -1.060987677 0.57492438 0.083638665 0.519513537
## G02b -0.675893424 -0.216017827 0.29134578 -0.813713017 -0.209664621
## G02c -1.152440344 -0.216800313 -0.47195793 0.758518248 -0.255909502
## G03a -0.373344821 0.076143133 0.49022358 0.003102402 0.582712016
## G03b -0.417947113 0.034009572 0.39694430 -0.710674383 0.188875266
## G03c -0.596045930 -0.981276623 -0.11254117 0.476301358 -0.493313974
## G04a -0.094838774 0.007037165 0.74321683 -0.062698842 0.341722542
## G04b -0.347300666 0.309437338 0.17575124 -0.672908318 -0.227510409
## G04c -0.644517860 -0.611136011 -0.12481239 -0.036061346 -0.786228369
## G05a -0.382966040 0.491709970 0.44079481 0.125052484 0.583734965
## G05b -0.358089593 0.310842767 0.05050799 -0.301806788 -0.085759994
## G05c -0.755516606 0.187504658 -0.47516236 -0.317460320 -0.142890906
## G06a 0.025703835 0.176827210 0.85918830 0.712590768 0.455424699
## G06b 0.196080624 0.893828637 -0.20388525 -0.251306992 0.038739677
## G06c -0.787536290 0.316994923 -0.31325927 0.160427246 0.412230409
## G07a -0.073521025 0.360879099 0.93678419 0.778212361 -0.405878515
## G07b 0.346997860 0.391976480 0.40625207 -0.620125587 0.247893759
## G07c -0.492953272 0.440391034 -0.33657740 0.175907213 -0.243991419
## G08a 0.522370660 0.227031796 -0.01181189 0.685128842 -0.557454395
## G08b 0.193480170 0.491366709 0.37919643 -0.392593720 -0.162807138
## G08c -0.612074785 0.396031702 -0.41941139 0.280684542 0.351962308
## G09a 0.218139427 0.486780427 0.20167594 0.462193898 0.079120749
## G09b 0.372882166 0.612526420 0.14254390 -0.079579583 -0.341585981
## G09c 0.051373822 0.916427273 -0.52368220 0.550817880 -0.024792272
## G10a 0.539739226 0.169954180 0.58804613 0.475755642 -0.404241824
## G10b 0.285617248 0.494566443 0.09456358 -0.552659302 -0.697474033
## G10c -0.016339701 0.261840308 -0.50424273 0.201974050 0.352233040
## G11a 0.944179743 -0.708575275 0.59156182 0.152329600 -0.122318164
## G11b 0.523647571 0.061652807 0.13377141 -0.562802890 0.025994077
## G11c -0.052763504 0.223963476 -0.56893004 0.443833919 -0.123972287
## G12a 0.861609981 -0.348505669 0.43179542 0.516266485 0.158023158
## G12b 0.681558734 -0.127849758 -0.10147708 -0.468731000 0.277498541
## G12c -0.005971133 0.026537958 -0.61620896 0.047494466 0.174629648
## G13a 0.807939359 -0.716678338 -0.36767379 0.242822002 -0.206907476
## G13b 0.702660236 -0.066881800 -0.03966936 -0.383684741 -0.220286399
## G13c -0.153404948 -0.146070251 -0.30739233 0.282920605 0.885099453
## G14a 0.784610913 -0.782536521 -0.43857648 0.043261766 0.324798451
## G14b 0.477781768 0.091853921 -0.30462413 -0.400897652 -0.091502660
## G14c 0.617835964 0.138904360 -0.75189566 -0.026823868 0.189555977
## G15a 0.809462028 -0.798715500 -0.26827585 0.079548611 -0.005485392
## G15b 0.891095520 -0.065789592 -0.18798089 -0.165731602 -0.189715212
## G15c 0.150623487 -0.125983526 -0.67730993 -0.089118723 0.144883224
## Cynaelli -0.759083952 -1.254095436 0.11040973 -0.536710955 0.537257398
## Euclrace -0.413361340 -0.151511344 0.07670729 -0.582497105 0.009931213
## Helicomo -0.524589508 -1.025525052 0.13391902 -0.262363981 0.335169853
## Oleaexas -0.780066293 -0.233368162 -0.10394266 -0.092776555 -0.145833802
## Resteleo 0.321971704 -0.181990629 -0.18889680 -0.107704828 0.164273720
## Crasfili -0.684240329 -0.129840143 -0.55233782 0.005820821 -0.382472825
## Metamuri -0.151941510 0.335526409 0.67749995 0.144710569 0.214261629
## Zalumari -1.653958999 -0.361398976 0.23831719 0.412281930 -0.624212004
## Felilati -0.441560073 -0.445322905 0.82166153 0.023722238 0.804181003
## Ficibulb -0.565746874 -1.557046280 0.83569115 0.119203718 0.808310173
## Morequer 0.550219713 -1.217496819 -0.32955211 0.285660902 -0.102696145
## Oxaldepr -0.565746874 -1.557046280 0.83569115 0.119203718 0.808310173
## Ehrherec -0.402863367 0.224878717 0.44314803 -0.920502046 -0.200878281
## Ficiramo 0.232605344 0.451023512 0.15363364 -0.605921182 -0.313142536
## Plecserp -0.643775326 0.012870034 0.43774332 -1.054921394 -0.104430833
## Chendiff -1.490266072 -0.318164035 -0.68602251 1.081057372 -0.398169132
## Eleolimo -1.107730342 -0.914648446 -0.40825766 0.867207204 -0.594556683
## Laurtetr -0.365347132 0.596761489 -0.62087379 0.328727543 0.106982395
## Sileundu -1.107730342 -0.914648446 -0.40825766 0.867207204 -0.594556683
## Aspaafri -0.227295792 0.039798089 0.97345229 -0.062107639 0.640644589
## Colepulc 0.117717152 0.429343099 -0.11856313 0.015381736 -0.015623225
## Rapagill -0.403244326 0.383147503 -0.13277503 0.387410149 0.658898772
## Searcren 0.246885136 0.434819560 0.19684280 -0.441075334 0.279348472
## Colpcomp -0.831792071 0.200245372 -0.26903090 -0.638857087 -0.050627715
## Feliechi -0.575181897 -0.754479286 -0.11255206 0.042771892 -1.046421345
## Elegmicr 0.603807019 -0.314934492 0.93667771 0.543499478 0.332491792
## Ficicape 0.536243029 0.384316123 0.08391049 -0.514757440 -0.295808837
## Helitere 0.505398609 0.054409134 0.40154970 0.187289705 -0.543787880
## Searglau -0.447948022 0.253222604 -0.39103802 0.289820293 0.822644463
## Chaecamp 0.415289967 0.298416861 0.13795520 -0.711332729 -0.093585921
## Carpdeli 0.152454300 0.569916532 -0.04577189 0.520128163 -0.249718473
## Robsmari 0.033238643 0.259501742 1.24888782 1.015600488 0.708594465
## Seneangu 0.847222257 -0.612116391 0.99258398 0.469420130 -0.116651687
## Senepurp 0.547696548 0.489667929 -0.04787753 -0.619403961 0.220422690
## Oxalpunc -1.018394245 0.465204052 -0.45534337 0.228644541 0.641388548
## Crasglom -0.095072938 0.529606018 1.36167867 1.109125868 -0.631505647
## Searlaev 0.483480332 -0.038816183 0.37322590 0.824678080 -0.593852611
## Vellvell 0.216162523 0.450268759 0.80475870 1.055542267 -0.726760620
## Phyleric 0.966275504 -0.485385319 0.05098086 0.138270411 -0.155917428
## Anthaeth 0.190636390 0.392545502 -0.50917176 0.347164363 0.463524714
## Meseaito 0.622749961 0.200405112 0.35241875 -0.488683123 -0.818915834
## Passcory 0.596672109 -0.187014432 -0.62232844 -0.091232173 0.058886156
## Passrigi 1.114181857 -0.511447463 0.62764360 0.735794678 0.245867946
## Chirbacc 1.014611324 -1.148406910 -0.63750034 0.061657648 0.505353323
## Indiglau 0.798948059 0.203848284 -1.09293078 -0.038229983 0.294929802
## score label
## G01a sites G01a
## G01b sites G01b
## G01c sites G01c
## G02a sites G02a
## G02b sites G02b
## G02c sites G02c
## G03a sites G03a
## G03b sites G03b
## G03c sites G03c
## G04a sites G04a
## G04b sites G04b
## G04c sites G04c
## G05a sites G05a
## G05b sites G05b
## G05c sites G05c
## G06a sites G06a
## G06b sites G06b
## G06c sites G06c
## G07a sites G07a
## G07b sites G07b
## G07c sites G07c
## G08a sites G08a
## G08b sites G08b
## G08c sites G08c
## G09a sites G09a
## G09b sites G09b
## G09c sites G09c
## G10a sites G10a
## G10b sites G10b
## G10c sites G10c
## G11a sites G11a
## G11b sites G11b
## G11c sites G11c
## G12a sites G12a
## G12b sites G12b
## G12c sites G12c
## G13a sites G13a
## G13b sites G13b
## G13c sites G13c
## G14a sites G14a
## G14b sites G14b
## G14c sites G14c
## G15a sites G15a
## G15b sites G15b
## G15c sites G15c
## Cynaelli species Cynaelli
## Euclrace species Euclrace
## Helicomo species Helicomo
## Oleaexas species Oleaexas
## Resteleo species Resteleo
## Crasfili species Crasfili
## Metamuri species Metamuri
## Zalumari species Zalumari
## Felilati species Felilati
## Ficibulb species Ficibulb
## Morequer species Morequer
## Oxaldepr species Oxaldepr
## Ehrherec species Ehrherec
## Ficiramo species Ficiramo
## Plecserp species Plecserp
## Chendiff species Chendiff
## Eleolimo species Eleolimo
## Laurtetr species Laurtetr
## Sileundu species Sileundu
## Aspaafri species Aspaafri
## Colepulc species Colepulc
## Rapagill species Rapagill
## Searcren species Searcren
## Colpcomp species Colpcomp
## Feliechi species Feliechi
## Elegmicr species Elegmicr
## Ficicape species Ficicape
## Helitere species Helitere
## Searglau species Searglau
## Chaecamp species Chaecamp
## Carpdeli species Carpdeli
## Robsmari species Robsmari
## Seneangu species Seneangu
## Senepurp species Senepurp
## Oxalpunc species Oxalpunc
## Crasglom species Crasglom
## Searlaev species Searlaev
## Vellvell species Vellvell
## Phyleric species Phyleric
## Anthaeth species Anthaeth
## Meseaito species Meseaito
## Passcory species Passcory
## Passrigi species Passrigi
## Chirbacc species Chirbacc
## Indiglau species Indiglau