Linear Effects Model:
\(Y_{ij}=\mu+\alpha_i+\beta_j+\varepsilon_{ij}\)
where,
\(\mu\) = Grand mean
\(\alpha_i\) = fixed effects for treatment i
\(\beta_j\) = Block effect for j
\(\varepsilon_{ij}\) = Random error
Hypothesis:
\(H_{0}: \mu_1=\mu_2=\mu_3=\mu_4\)
\(H_{a}\): at least one \(\mu_i\) differs
library(GAD)
obs<- c(73, 68, 74, 71, 73, 67, 75, 72, 75, 68, 78, 73, 73, 71, 75, 75)
chemical<-c(rep(1,4), rep(2,4), rep(3,4), rep(4,4))
bolt<-c(rep(seq(1,4),4))
chemical<-as.fixed(chemical)
bolt<-as.random(bolt)
model<-lm(obs~chemical + bolt)
gad(model)
## $anova
## Analysis of Variance Table
##
## Response: obs
## Df Sum Sq Mean Sq F value Pr(>F)
## chemical 3 14.187 4.729 2.7349 0.1057217
## bolt 3 104.188 34.729 20.0843 0.0002515 ***
## Residuals 9 15.563 1.729
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Here, the p-value (0.1057217) is less than alpha (0.15). So we reject null hypothesis.
Linear effect equation:
\(Y_{ij}=\mu +\alpha_{i}+\varepsilon _{ij}\)
where, \(\mu\) = Grand mean
\(\alpha_i\) = fixed effects for treatment i
\(\varepsilon_{ij}\) = Random error
Hypothesis:
\(H_{0}: \mu_1=\mu_2=\mu_3=\mu_4\)
\(H_{a}\): at least one \(\mu_i\) differs
model2<- lm(obs~chemical)
gad(model2)
## $anova
## Analysis of Variance Table
##
## Response: obs
## Df Sum Sq Mean Sq F value Pr(>F)
## chemical 3 14.187 4.7292 0.4739 0.7062
## Residuals 12 119.750 9.9792
Here, the p-value(0.7062) is greater than alpha (0.15). Hence, we fail to reject the null hypothesis.
While comparing the p-value with the alpha , we rejected the null hypothesis in question number 1 whereas we failed to reject the null hypothesis in question number 2. We can see that the effect of blocking included nuisance variability and led to rejection of null hypothesis. So, we can conclude that the bolt of cloth represents a significant amount of nuisance variability.
library(GAD)
obs<- c(73, 68, 74, 71, 73, 67, 75, 72, 75, 68, 78, 73, 73, 71, 75, 75)
chemical<-c(rep(1,4), rep(2,4), rep(3,4), rep(4,4))
bolt<-c(rep(seq(1,4),4))
chemical<-as.fixed(chemical)
bolt<-as.random(bolt)
model<-lm(obs~chemical + bolt)
gad(model)
model2<- lm(obs~chemical)
gad(model2)