#Praktikum 1 - K-Means
#===Packages
library("tidyverse")
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 4.0.0 ✔ tibble 3.3.0
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.1.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library("factoextra")
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
library("DataExplorer")
library("easystats")
## # Attaching packages: easystats 0.7.5 (red = needs update)
## ✔ bayestestR 0.17.0 ✔ correlation 0.8.8
## ✔ datawizard 1.2.0 ✔ effectsize 1.0.1
## ✔ insight 1.4.2 ✔ modelbased 0.13.0
## ✖ performance 0.15.1 ✖ parameters 0.28.1
## ✔ report 0.6.1 ✖ see 0.11.0
##
## Restart the R-Session and update packages with `easystats::easystats_update()`.
library("umap")
library("ggpubr")
##
## Attaching package: 'ggpubr'
##
## The following objects are masked from 'package:datawizard':
##
## mean_sd, median_mad
#===Import Data
df <- read.csv("D:/Kuliah/IPB 2025 Semester 3/Pemodelan Klasifikasi/Praktikum/Praktikum 1/Data/credit card.csv", stringsAsFactors = T)
glimpse(df)
## Rows: 8,950
## Columns: 18
## $ CUST_ID <fct> C10001, C10002, C10003, C10004, C1000…
## $ BALANCE <dbl> 40.90075, 3202.46742, 2495.14886, 166…
## $ BALANCE_FREQUENCY <dbl> 0.818182, 0.909091, 1.000000, 0.63636…
## $ PURCHASES <dbl> 95.40, 0.00, 773.17, 1499.00, 16.00, …
## $ ONEOFF_PURCHASES <dbl> 0.00, 0.00, 773.17, 1499.00, 16.00, 0…
## $ INSTALLMENTS_PURCHASES <dbl> 95.40, 0.00, 0.00, 0.00, 0.00, 1333.2…
## $ CASH_ADVANCE <dbl> 0.0000, 6442.9455, 0.0000, 205.7880, …
## $ PURCHASES_FREQUENCY <dbl> 0.166667, 0.000000, 1.000000, 0.08333…
## $ ONEOFF_PURCHASES_FREQUENCY <dbl> 0.000000, 0.000000, 1.000000, 0.08333…
## $ PURCHASES_INSTALLMENTS_FREQUENCY <dbl> 0.083333, 0.000000, 0.000000, 0.00000…
## $ CASH_ADVANCE_FREQUENCY <dbl> 0.000000, 0.250000, 0.000000, 0.08333…
## $ CASH_ADVANCE_TRX <int> 0, 4, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ PURCHASES_TRX <int> 2, 0, 12, 1, 1, 8, 64, 12, 5, 3, 12, …
## $ CREDIT_LIMIT <dbl> 1000, 7000, 7500, 7500, 1200, 1800, 1…
## $ PAYMENTS <dbl> 201.8021, 4103.0326, 622.0667, 0.0000…
## $ MINIMUM_PAYMENTS <dbl> 139.50979, 1072.34022, 627.28479, NA,…
## $ PRC_FULL_PAYMENT <dbl> 0.000000, 0.222222, 0.000000, 0.00000…
## $ TENURE <int> 12, 12, 12, 12, 12, 12, 12, 12, 12, 1…
#Eksplorasi Data
#Plot
plot_intro(data = df,ggtheme = theme_minimal())

#Histogram
plot_histogram(data = df,
ncol = 2,nrow = 2,
geom_histogram_args = list(fill="steelblue",col="black"),
ggtheme = theme_minimal())
## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.

## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.

## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.

## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.

## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.

#KOrelasi
correlation(data = df,method = "spearman",
include_factors = FALSE) %>%
as.matrix() %>%
plot(text=list(size=2))+theme(text = element_text(size = 6),
axis.text.x = element_text(angle = 45,
hjust = 1))

#Data Cleaning
df <- df %>% na.omit()
plot_intro(df)

#Standarisasi Peubah - KMeans pakai Euclidean yang dipengaruhi skala
df_std <- standardize(df)
plot_histogram(data = df_std,
ncol = 2,nrow = 2,
geom_histogram_args = list(fill="steelblue",col="black"),
ggtheme = theme_minimal())
## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.

## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.

## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.

## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.

## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.

#===Banyaknya cluster Terbaik
#1. Visualisasi PCA
pca0 <- prcomp(x = df_std %>% select(-CUST_ID))
fviz_pca_ind(pca0,
geom.ind = "point"
)

#2.UMAP
umap0 <- umap(d = df_std %>% select(-CUST_ID))
data_umap <- data.frame(x=umap0$layout[,1],y=umap0$layout[,2])
ggscatter(data_umap, x = "x", y = "y")

#3. Metric WSS (Within Sum of Squared)
set.seed(123)
fviz_nbclust(
x = df_std %>% select(-CUST_ID),
FUNcluster = stats::kmeans,
method = "wss",
iter.max = 100,
k.max = 25
)

#4. Metric Koefisien Silhouette
set.seed(123)
fviz_nbclust(
x = df_std %>% select(-CUST_ID),
FUNcluster = stats::kmeans,
method = "silhouette",
iter.max = 100,
k.max = 25
)

#===Penerapan Metode Terbaik
set.seed(123)
kmean_res <- kmeans(df_std %>% select(-CUST_ID),
centers = 7,
iter.max = 100)
kmean_res$centers
## BALANCE BALANCE_FREQUENCY PURCHASES ONEOFF_PURCHASES
## 1 -0.003679619 0.3932206 -0.34750262 -0.2271971
## 2 -0.379315434 0.3234073 -0.04645383 -0.2350586
## 3 1.664019449 0.3776543 -0.20597786 -0.1526654
## 4 -0.329026156 -0.3213573 -0.28694700 -0.2148390
## 5 1.475135796 0.3780967 7.19735250 6.2895625
## 6 -0.699045017 -2.2196501 -0.29692601 -0.2219300
## 7 0.132238165 0.4120371 0.95907495 0.9119334
## INSTALLMENTS_PURCHASES CASH_ADVANCE PURCHASES_FREQUENCY
## 1 -0.4039690 -0.110923345 -0.8205139
## 2 0.3220250 -0.371230271 0.9743029
## 3 -0.2065262 1.974769039 -0.4576642
## 4 -0.2832352 0.081180989 -0.1712167
## 5 5.4549970 0.008129406 1.0587149
## 6 -0.2940439 -0.312988271 -0.5488391
## 7 0.5915735 -0.306660011 1.0891967
## ONEOFF_PURCHASES_FREQUENCY PURCHASES_INSTALLMENTS_FREQUENCY
## 1 -0.3411377 -0.7615576
## 2 -0.3534162 1.1670026
## 3 -0.1935885 -0.4039784
## 4 -0.2795264 -0.2050887
## 5 1.8115197 1.0250211
## 6 -0.4046639 -0.4639245
## 7 1.8575427 0.5494410
## CASH_ADVANCE_FREQUENCY CASH_ADVANCE_TRX PURCHASES_TRX CREDIT_LIMIT PAYMENTS
## 1 0.07921907 -0.045465272 -0.4688747 -0.3083535 -0.2566096
## 2 -0.48436681 -0.366771145 0.1654523 -0.2835829 -0.2375091
## 3 1.88773119 1.915126019 -0.2426090 1.0142178 0.8036150
## 4 0.32329922 -0.004497674 -0.3841455 -0.5565460 -0.3811768
## 5 -0.32871705 -0.125359753 4.7684590 2.2086159 4.9907591
## 6 -0.51285671 -0.372141174 -0.4155147 -0.1663502 -0.1556026
## 7 -0.40902805 -0.317379255 1.2152026 0.7161350 0.4082754
## MINIMUM_PAYMENTS PRC_FULL_PAYMENT TENURE
## 1 -0.01378486 -0.46497307 0.26551761
## 2 -0.02477574 0.28262149 0.25299785
## 3 0.55639126 -0.41160714 0.06703541
## 4 -0.21865992 0.02140241 -3.24174836
## 5 1.16363215 0.77745281 0.32505012
## 6 -0.29566285 0.41837217 0.21200614
## 7 -0.02754895 0.45113504 0.29948228
table(kmean_res$cluster)
##
## 1 2 3 4 5 6 7
## 2774 2001 871 594 76 1087 1233
#===Validasi Hasil Clustering
sil <- cluster::silhouette(x = kmean_res$cluster,
dist = dist(x =df_std %>% select(-CUST_ID) ,
method = "euclidean"))
fviz_silhouette(sil,print.summary = FALSE)+
scale_color_manual(values = get_palette("jco",k=7))+
# get_palette berasal dari package ggpubr
scale_fill_manual(values = get_palette("jco",k=7))+
theme_minimal()+
theme(legend.position = "top")
## Warning: `aes_string()` was deprecated in ggplot2 3.0.0.
## ℹ Please use tidy evaluation idioms with `aes()`.
## ℹ See also `vignette("ggplot2-in-packages")` for more information.
## ℹ The deprecated feature was likely used in the factoextra package.
## Please report the issue at <https://github.com/kassambara/factoextra/issues>.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.

sil %>%
as.data.frame() %>%
mutate(obs=1:nrow(sil)) %>%
relocate(obs) %>%
filter(sil_width<0) %>%
arrange(sil_width)
## obs cluster neighbor sil_width
## 1 3006 3 1 -0.3135004935
## 2 767 3 1 -0.3122560482
## 3 2437 3 1 -0.3117921649
## 4 4871 3 1 -0.3086938780
## 5 5609 3 1 -0.3068152191
## 6 6719 3 1 -0.2973489201
## 7 850 3 1 -0.2959118748
## 8 4094 3 1 -0.2957829785
## 9 4419 3 1 -0.2956147089
## 10 1783 3 1 -0.2934967087
## 11 290 3 1 -0.2894230881
## 12 6109 3 1 -0.2860991163
## 13 5401 3 1 -0.2846156119
## 14 6685 3 1 -0.2843348161
## 15 5635 3 1 -0.2819121200
## 16 526 5 7 -0.2814070392
## 17 3492 3 1 -0.2800812253
## 18 2412 5 7 -0.2794147055
## 19 2855 3 1 -0.2785872319
## 20 6179 5 7 -0.2780118826
## 21 4923 5 7 -0.2779463958
## 22 158 3 1 -0.2742544175
## 23 1972 3 1 -0.2726074742
## 24 3499 3 1 -0.2713671433
## 25 6048 3 1 -0.2712283873
## 26 744 3 1 -0.2698462102
## 27 3717 3 1 -0.2689035676
## 28 5944 3 1 -0.2666269984
## 29 181 5 7 -0.2645072082
## 30 4975 3 1 -0.2641957726
## 31 2528 3 1 -0.2614277771
## 32 8330 3 1 -0.2602853169
## 33 3876 3 1 -0.2587458954
## 34 5874 3 1 -0.2586797936
## 35 3919 3 1 -0.2581537529
## 36 1445 3 1 -0.2581308581
## 37 6333 3 1 -0.2574551660
## 38 7045 5 7 -0.2569446442
## 39 3864 3 1 -0.2560504809
## 40 958 3 1 -0.2534589022
## 41 7706 3 1 -0.2534126913
## 42 8072 3 1 -0.2529903398
## 43 3953 3 1 -0.2529738846
## 44 5603 3 1 -0.2511065824
## 45 5464 3 1 -0.2496883577
## 46 3159 5 7 -0.2496718580
## 47 6660 3 1 -0.2495063656
## 48 562 3 1 -0.2470178557
## 49 1062 3 1 -0.2469597194
## 50 3463 3 1 -0.2464614720
## 51 3151 3 1 -0.2447451145
## 52 4814 3 1 -0.2441569020
## 53 153 5 7 -0.2437410508
## 54 2945 3 1 -0.2429654220
## 55 954 3 1 -0.2429351927
## 56 1398 3 1 -0.2421960489
## 57 7161 3 1 -0.2416835330
## 58 5807 3 1 -0.2416239678
## 59 4560 3 1 -0.2404755888
## 60 4494 3 1 -0.2380292320
## 61 4583 3 1 -0.2378014516
## 62 5246 3 1 -0.2373371474
## 63 3948 3 1 -0.2373237703
## 64 8507 3 1 -0.2364536165
## 65 4031 3 1 -0.2364304233
## 66 4272 7 2 -0.2360893674
## 67 366 3 1 -0.2356515680
## 68 5189 3 1 -0.2354583389
## 69 546 5 7 -0.2353210221
## 70 5213 3 1 -0.2344998530
## 71 3408 3 1 -0.2341991936
## 72 5247 3 1 -0.2338536624
## 73 7991 3 1 -0.2331639152
## 74 3148 3 1 -0.2326114419
## 75 5363 3 1 -0.2310130804
## 76 2519 3 1 -0.2304386031
## 77 1671 3 1 -0.2297258413
## 78 6462 3 1 -0.2292391944
## 79 536 5 7 -0.2269807125
## 80 629 5 7 -0.2269665811
## 81 2289 3 1 -0.2265296405
## 82 6460 3 1 -0.2264379660
## 83 3348 7 2 -0.2257805711
## 84 7358 7 1 -0.2254349632
## 85 6904 3 1 -0.2251995631
## 86 5167 3 1 -0.2251304161
## 87 1713 3 1 -0.2247610157
## 88 8033 3 1 -0.2236371460
## 89 6131 3 1 -0.2233088450
## 90 5963 3 1 -0.2229488485
## 91 1641 7 2 -0.2225089828
## 92 4777 3 1 -0.2221381943
## 93 7442 3 1 -0.2213142443
## 94 6380 3 1 -0.2200477050
## 95 3494 3 1 -0.2190423804
## 96 5392 3 1 -0.2186190345
## 97 2164 3 1 -0.2175686282
## 98 5690 3 1 -0.2166225171
## 99 2494 3 1 -0.2155669099
## 100 3044 3 1 -0.2153552585
## 101 4852 7 1 -0.2147043241
## 102 2179 7 2 -0.2145502704
## 103 7882 3 1 -0.2140194309
## 104 7236 3 1 -0.2138329655
## 105 3535 3 1 -0.2138216417
## 106 6422 5 7 -0.2116652183
## 107 2973 5 7 -0.2112859953
## 108 6606 3 1 -0.2112495960
## 109 5536 7 1 -0.2110173426
## 110 6134 3 1 -0.2109469891
## 111 2 3 1 -0.2108146378
## 112 5182 3 1 -0.2106647712
## 113 3972 7 2 -0.2101422969
## 114 1915 5 7 -0.2100419597
## 115 943 7 2 -0.2090088461
## 116 6727 3 1 -0.2085306723
## 117 6273 3 1 -0.2083357000
## 118 865 3 1 -0.2082544874
## 119 4689 7 2 -0.2081491643
## 120 5294 5 7 -0.2071455019
## 121 6037 3 1 -0.2071229304
## 122 1426 3 1 -0.2066538933
## 123 5123 3 1 -0.2065661603
## 124 2199 3 1 -0.2063841567
## 125 2284 3 1 -0.2060994254
## 126 6559 3 1 -0.2055496730
## 127 1622 3 1 -0.2054249437
## 128 4741 3 1 -0.2052798485
## 129 6117 3 1 -0.2052787020
## 130 2823 3 1 -0.2052738211
## 131 3404 7 2 -0.2052246770
## 132 292 3 1 -0.2051958287
## 133 4409 3 2 -0.2048318391
## 134 4808 3 1 -0.2046308719
## 135 4674 5 7 -0.2042198540
## 136 6800 3 1 -0.2038906686
## 137 4889 7 2 -0.2030462582
## 138 8113 3 1 -0.2002831002
## 139 15 3 1 -0.1990803182
## 140 6420 7 1 -0.1988824921
## 141 1712 3 1 -0.1979751391
## 142 6603 3 1 -0.1969548533
## 143 5790 3 1 -0.1969517956
## 144 7245 3 1 -0.1968886367
## 145 2333 3 1 -0.1967693994
## 146 1254 3 1 -0.1961227852
## 147 2467 3 1 -0.1957415760
## 148 430 7 2 -0.1955453736
## 149 5798 3 1 -0.1954043731
## 150 6956 7 2 -0.1950532015
## 151 4802 3 1 -0.1947045824
## 152 1075 7 1 -0.1946829224
## 153 553 5 7 -0.1943260143
## 154 2054 7 2 -0.1935226810
## 155 6676 3 1 -0.1934327892
## 156 1274 3 1 -0.1931384746
## 157 2962 3 1 -0.1928072392
## 158 2752 3 1 -0.1918421719
## 159 2576 3 1 -0.1914270169
## 160 4709 7 2 -0.1913885085
## 161 5672 7 2 -0.1899148183
## 162 7313 5 7 -0.1891690446
## 163 279 7 2 -0.1883597706
## 164 2287 7 2 -0.1878366198
## 165 4519 7 2 -0.1877373034
## 166 4973 7 2 -0.1861079359
## 167 1957 7 2 -0.1859822510
## 168 825 3 1 -0.1855673354
## 169 3995 7 1 -0.1855245848
## 170 2888 7 2 -0.1853726474
## 171 1239 7 2 -0.1848635909
## 172 2664 3 1 -0.1842779671
## 173 7468 7 2 -0.1805901159
## 174 6978 7 1 -0.1804155810
## 175 6493 7 2 -0.1803234170
## 176 2486 3 1 -0.1798386844
## 177 516 7 1 -0.1787309490
## 178 7379 3 1 -0.1781634054
## 179 3154 3 2 -0.1780600480
## 180 4356 3 1 -0.1779571893
## 181 2191 3 1 -0.1776722215
## 182 2950 7 2 -0.1775170893
## 183 2484 3 1 -0.1767424309
## 184 4877 3 1 -0.1759008413
## 185 521 3 1 -0.1757086949
## 186 8008 3 1 -0.1755385095
## 187 5587 5 7 -0.1746754913
## 188 305 3 1 -0.1746530401
## 189 2128 7 1 -0.1742044892
## 190 3802 7 2 -0.1741885084
## 191 1312 7 1 -0.1740247213
## 192 2961 7 2 -0.1730562058
## 193 6239 3 2 -0.1729578579
## 194 3714 7 1 -0.1719653408
## 195 7686 7 2 -0.1716205172
## 196 4068 3 1 -0.1715643534
## 197 2149 7 1 -0.1712457944
## 198 101 3 1 -0.1712404879
## 199 610 3 1 -0.1711647023
## 200 3082 3 1 -0.1710100806
## 201 3985 3 1 -0.1709621429
## 202 6212 7 2 -0.1709582292
## 203 2787 7 2 -0.1707546923
## 204 3262 7 2 -0.1704649809
## 205 4484 7 2 -0.1691893263
## 206 1066 7 2 -0.1690940790
## 207 6040 3 1 -0.1690770420
## 208 2640 3 1 -0.1688683539
## 209 4704 7 1 -0.1684391297
## 210 1336 7 2 -0.1682366891
## 211 463 7 1 -0.1680460870
## 212 203 7 2 -0.1674616247
## 213 5268 3 1 -0.1673653639
## 214 1716 7 2 -0.1669990685
## 215 4924 7 1 -0.1669745148
## 216 2753 7 2 -0.1667254205
## 217 6459 7 2 -0.1665176750
## 218 8114 7 1 -0.1663549831
## 219 4724 7 2 -0.1659241524
## 220 3002 5 7 -0.1657289293
## 221 2758 7 2 -0.1655667392
## 222 5927 7 2 -0.1637442847
## 223 6023 3 1 -0.1631491195
## 224 1362 3 1 -0.1623227746
## 225 5671 5 7 -0.1621684411
## 226 7347 7 2 -0.1621361647
## 227 6641 3 1 -0.1618161057
## 228 570 3 2 -0.1613216101
## 229 1844 3 2 -0.1611643593
## 230 3183 3 1 -0.1608945464
## 231 1341 7 2 -0.1599299943
## 232 2579 3 1 -0.1597370712
## 233 3778 3 1 -0.1595623701
## 234 6962 3 1 -0.1592162150
## 235 137 7 2 -0.1585974033
## 236 5186 3 1 -0.1585760851
## 237 4164 3 1 -0.1579443900
## 238 2731 3 1 -0.1578160523
## 239 205 5 7 -0.1576940821
## 240 4192 3 1 -0.1572285617
## 241 3862 7 2 -0.1571634150
## 242 3451 7 2 -0.1563808383
## 243 5625 7 2 -0.1563265223
## 244 6306 3 1 -0.1561411657
## 245 2918 3 1 -0.1560738033
## 246 3999 7 2 -0.1560675772
## 247 5386 3 6 -0.1559889204
## 248 5939 7 2 -0.1557974722
## 249 7860 3 1 -0.1551330352
## 250 5175 3 6 -0.1545050169
## 251 582 5 7 -0.1544482667
## 252 6119 7 1 -0.1538489102
## 253 5643 7 2 -0.1537775095
## 254 571 7 2 -0.1534139440
## 255 2844 3 1 -0.1529294475
## 256 1267 7 2 -0.1529091397
## 257 1383 7 2 -0.1528173168
## 258 8485 4 1 -0.1526473866
## 259 5969 3 1 -0.1516530553
## 260 3791 7 1 -0.1512137348
## 261 6171 3 2 -0.1508621033
## 262 4201 7 1 -0.1496807863
## 263 7008 3 1 -0.1492366619
## 264 4008 7 2 -0.1491997774
## 265 272 7 1 -0.1489147311
## 266 3369 3 1 -0.1487141447
## 267 4117 7 2 -0.1485630190
## 268 4109 3 1 -0.1484213027
## 269 3651 5 7 -0.1483567830
## 270 1060 3 1 -0.1480163197
## 271 49 7 2 -0.1479326811
## 272 7131 7 2 -0.1474148209
## 273 7349 3 2 -0.1472638279
## 274 7205 3 1 -0.1471056786
## 275 2386 3 1 -0.1469502356
## 276 5756 3 2 -0.1469014824
## 277 5428 7 1 -0.1468951606
## 278 7853 3 1 -0.1466288581
## 279 4407 7 2 -0.1463775652
## 280 8021 3 1 -0.1463578423
## 281 1340 7 1 -0.1462269990
## 282 4971 7 2 -0.1461867571
## 283 5211 3 1 -0.1445437613
## 284 3485 3 1 -0.1445300295
## 285 6415 3 2 -0.1442538637
## 286 3128 7 2 -0.1441381942
## 287 793 3 1 -0.1441293852
## 288 7101 7 1 -0.1440975867
## 289 5930 7 2 -0.1436065830
## 290 4886 5 7 -0.1429249141
## 291 4539 7 1 -0.1425607764
## 292 2066 3 1 -0.1424827207
## 293 2877 3 1 -0.1422576503
## 294 3979 7 2 -0.1421350828
## 295 1579 3 1 -0.1420646854
## 296 7891 7 2 -0.1420160146
## 297 1850 3 1 -0.1415904775
## 298 3139 3 1 -0.1412429605
## 299 5750 3 1 -0.1411637227
## 300 6369 3 1 -0.1408238121
## 301 7299 3 1 -0.1405851026
## 302 1369 7 2 -0.1400859966
## 303 4191 7 2 -0.1400373855
## 304 2014 4 1 -0.1399696496
## 305 6526 7 1 -0.1399500417
## 306 2037 7 2 -0.1399136776
## 307 699 3 1 -0.1395774160
## 308 5215 3 1 -0.1392482109
## 309 2968 7 2 -0.1391964131
## 310 4335 3 1 -0.1391332120
## 311 5455 7 1 -0.1388385436
## 312 6702 3 1 -0.1385920959
## 313 4296 7 2 -0.1384933346
## 314 454 7 2 -0.1384148590
## 315 625 7 2 -0.1381853559
## 316 340 3 2 -0.1378186156
## 317 7044 3 1 -0.1376415867
## 318 2772 3 1 -0.1374237208
## 319 5427 3 1 -0.1373394724
## 320 3435 3 2 -0.1372949822
## 321 2941 7 2 -0.1372883450
## 322 5553 3 1 -0.1371016205
## 323 7075 7 2 -0.1366977208
## 324 909 7 2 -0.1366431006
## 325 3514 3 1 -0.1366023055
## 326 2566 3 1 -0.1365133410
## 327 3136 3 1 -0.1364072927
## 328 998 7 2 -0.1362818837
## 329 5393 7 2 -0.1360102445
## 330 6435 3 1 -0.1359511995
## 331 918 7 2 -0.1358120673
## 332 7412 7 2 -0.1357898940
## 333 2843 3 2 -0.1356341821
## 334 1864 7 1 -0.1354333754
## 335 2869 7 1 -0.1353173381
## 336 2202 7 2 -0.1350076493
## 337 4714 3 1 -0.1349861593
## 338 4214 3 1 -0.1347417892
## 339 736 7 2 -0.1337725964
## 340 2770 3 1 -0.1330140271
## 341 304 3 1 -0.1328776997
## 342 7831 7 1 -0.1327391541
## 343 240 7 2 -0.1325873829
## 344 3847 7 1 -0.1324068257
## 345 2712 7 2 -0.1318286277
## 346 7138 7 2 -0.1316668389
## 347 2130 4 1 -0.1315889652
## 348 1360 3 1 -0.1315886625
## 349 2631 3 1 -0.1315583704
## 350 2901 7 2 -0.1315284952
## 351 1442 7 2 -0.1315111026
## 352 6792 7 1 -0.1310796067
## 353 6628 3 1 -0.1306601042
## 354 575 7 2 -0.1301626667
## 355 7736 3 1 -0.1300713912
## 356 795 3 1 -0.1299673091
## 357 8291 3 4 -0.1298130135
## 358 5832 7 2 -0.1296361308
## 359 3056 7 1 -0.1294124587
## 360 2153 4 1 -0.1289461458
## 361 3150 3 1 -0.1283394570
## 362 1293 7 1 -0.1282873349
## 363 2258 3 6 -0.1281867734
## 364 6470 7 2 -0.1277077385
## 365 4463 7 2 -0.1270211592
## 366 6114 7 2 -0.1267207319
## 367 4882 7 2 -0.1266457495
## 368 2462 3 2 -0.1263783697
## 369 539 3 1 -0.1261298119
## 370 4150 7 2 -0.1261183229
## 371 6364 7 2 -0.1260977208
## 372 759 3 1 -0.1255196840
## 373 4308 4 1 -0.1252964299
## 374 2358 3 2 -0.1250074176
## 375 7149 3 1 -0.1249665263
## 376 2328 3 1 -0.1244905055
## 377 6288 4 1 -0.1239208053
## 378 6813 3 1 -0.1232898696
## 379 3376 7 2 -0.1229927779
## 380 2201 7 2 -0.1227217631
## 381 4839 7 1 -0.1225170895
## 382 7945 3 1 -0.1224566056
## 383 5926 7 1 -0.1224426732
## 384 7079 7 1 -0.1217177923
## 385 833 7 2 -0.1217067352
## 386 981 7 1 -0.1214907017
## 387 4680 3 1 -0.1211255504
## 388 4712 7 2 -0.1209195009
## 389 5907 4 1 -0.1207504994
## 390 7100 3 1 -0.1206685199
## 391 7229 3 1 -0.1206656778
## 392 5523 7 1 -0.1206265136
## 393 2156 3 1 -0.1203828972
## 394 8318 7 2 -0.1202505511
## 395 2276 7 2 -0.1200986603
## 396 5028 7 2 -0.1200646396
## 397 1901 3 1 -0.1199124982
## 398 1016 7 2 -0.1197951416
## 399 2691 7 2 -0.1196485140
## 400 953 3 1 -0.1193041056
## 401 6968 3 2 -0.1191992512
## 402 7630 4 1 -0.1190819233
## 403 5331 7 2 -0.1184299455
## 404 7985 3 1 -0.1183566081
## 405 1946 3 1 -0.1179517343
## 406 180 3 1 -0.1171432927
## 407 8187 7 2 -0.1169667449
## 408 3186 4 1 -0.1167256369
## 409 5342 4 1 -0.1165167328
## 410 7356 3 1 -0.1162706362
## 411 1166 7 1 -0.1159960722
## 412 1661 5 7 -0.1156372850
## 413 1736 3 1 -0.1155824634
## 414 7489 3 1 -0.1154616000
## 415 5663 7 2 -0.1153378258
## 416 1207 7 1 -0.1153056804
## 417 5863 4 1 -0.1145717587
## 418 3102 7 6 -0.1144320323
## 419 2154 5 7 -0.1144206315
## 420 5137 7 2 -0.1143092824
## 421 2969 3 1 -0.1141959563
## 422 4749 7 2 -0.1133970548
## 423 6498 3 1 -0.1131284611
## 424 3884 5 7 -0.1130744506
## 425 1978 7 2 -0.1130646570
## 426 2109 3 1 -0.1129665083
## 427 3698 3 1 -0.1127878337
## 428 3227 7 1 -0.1126384281
## 429 38 3 1 -0.1116982472
## 430 4001 3 1 -0.1116036030
## 431 1224 7 2 -0.1115920250
## 432 1489 5 7 -0.1111914960
## 433 4431 3 2 -0.1109379746
## 434 5223 7 2 -0.1102667650
## 435 6646 7 1 -0.1094435354
## 436 5200 3 1 -0.1093927198
## 437 1392 7 1 -0.1093302574
## 438 617 7 2 -0.1092852700
## 439 5602 7 1 -0.1090208523
## 440 8170 7 2 -0.1084529429
## 441 4304 3 1 -0.1080934506
## 442 5771 7 1 -0.1080565803
## 443 4466 3 1 -0.1079224513
## 444 1697 3 1 -0.1076727253
## 445 2987 3 1 -0.1072924002
## 446 903 3 1 -0.1070231066
## 447 5683 7 2 -0.1063124703
## 448 6822 7 1 -0.1063031967
## 449 1064 7 2 -0.1061714312
## 450 1009 3 1 -0.1058011247
## 451 5368 7 1 -0.1057897218
## 452 4290 7 2 -0.1056571518
## 453 4390 5 7 -0.1056066029
## 454 7098 7 2 -0.1054339660
## 455 3090 3 1 -0.1051083284
## 456 6083 7 2 -0.1048308007
## 457 906 3 1 -0.1046507299
## 458 83 3 1 -0.1045872441
## 459 4765 4 1 -0.1045176409
## 460 1428 7 2 -0.1044123613
## 461 3160 3 1 -0.1042355319
## 462 1983 3 1 -0.1041477829
## 463 1321 5 7 -0.1040608293
## 464 5925 3 1 -0.1039533498
## 465 3066 7 1 -0.1039318342
## 466 4126 3 1 -0.1038517664
## 467 4185 7 2 -0.1033409479
## 468 4491 7 2 -0.1031434639
## 469 1833 3 1 -0.1026568451
## 470 4451 3 1 -0.1023727594
## 471 5491 7 2 -0.1021565671
## 472 1412 7 2 -0.1019897503
## 473 4786 6 1 -0.1011613202
## 474 8244 7 2 -0.1009201869
## 475 935 7 2 -0.1007415903
## 476 2548 7 2 -0.1003761780
## 477 3387 3 4 -0.1001865859
## 478 33 7 1 -0.0999997058
## 479 4286 7 1 -0.0999948295
## 480 5902 3 1 -0.0998471781
## 481 2979 3 1 -0.0998095095
## 482 302 7 2 -0.0995715927
## 483 7955 3 4 -0.0995314016
## 484 5056 7 2 -0.0993361131
## 485 532 3 1 -0.0993122688
## 486 1035 7 2 -0.0991763180
## 487 5463 7 2 -0.0987830285
## 488 2555 3 1 -0.0987762988
## 489 4188 7 1 -0.0987019797
## 490 1624 7 1 -0.0986487111
## 491 1257 3 1 -0.0986272466
## 492 4434 7 2 -0.0985676214
## 493 765 3 1 -0.0985637646
## 494 6529 7 2 -0.0983569646
## 495 3177 3 1 -0.0982163572
## 496 297 7 1 -0.0981065161
## 497 7603 7 2 -0.0974222147
## 498 211 3 1 -0.0973757665
## 499 2416 7 2 -0.0970051302
## 500 6050 4 1 -0.0969134583
## 501 3239 3 1 -0.0966405307
## 502 194 3 1 -0.0962464395
## 503 1665 7 2 -0.0961840924
## 504 8181 4 1 -0.0961592701
## 505 6502 7 2 -0.0958974055
## 506 2571 3 1 -0.0958017725
## 507 1276 3 2 -0.0956620699
## 508 2501 7 2 -0.0955572135
## 509 3229 7 1 -0.0955532143
## 510 7589 3 1 -0.0954208328
## 511 6967 3 1 -0.0953465966
## 512 4169 3 1 -0.0953307928
## 513 1979 7 2 -0.0950794193
## 514 401 7 2 -0.0948909549
## 515 6222 3 1 -0.0948734137
## 516 5308 3 1 -0.0948591321
## 517 8015 4 2 -0.0944561606
## 518 1403 7 2 -0.0943935988
## 519 8107 7 2 -0.0942644646
## 520 7996 4 2 -0.0938689559
## 521 8395 4 1 -0.0938372272
## 522 5753 7 2 -0.0938212830
## 523 6070 7 2 -0.0938151516
## 524 4069 7 2 -0.0931344356
## 525 7696 4 1 -0.0930828035
## 526 3316 7 1 -0.0928454535
## 527 7192 7 2 -0.0925174471
## 528 4379 6 1 -0.0924406337
## 529 6208 3 1 -0.0919558827
## 530 6359 3 1 -0.0916579589
## 531 1756 3 1 -0.0913631633
## 532 7526 3 2 -0.0908173910
## 533 8542 4 2 -0.0907491808
## 534 3289 3 1 -0.0907477080
## 535 8255 3 1 -0.0907146495
## 536 3882 3 1 -0.0906412381
## 537 7328 7 2 -0.0904704219
## 538 4861 7 1 -0.0904389078
## 539 5999 4 1 -0.0903726799
## 540 2944 3 1 -0.0902993345
## 541 3352 7 2 -0.0902743435
## 542 6224 7 2 -0.0901652099
## 543 274 7 2 -0.0899289053
## 544 7448 4 2 -0.0899234128
## 545 37 7 2 -0.0898205827
## 546 7966 7 2 -0.0896416722
## 547 834 3 1 -0.0895776047
## 548 4833 7 1 -0.0894192605
## 549 5395 5 7 -0.0892824640
## 550 7982 7 2 -0.0892778044
## 551 3004 3 1 -0.0892238299
## 552 6765 7 2 -0.0891222905
## 553 6406 7 2 -0.0891040592
## 554 1154 4 1 -0.0890498844
## 555 3615 3 1 -0.0890304275
## 556 3409 7 1 -0.0887813385
## 557 1703 3 1 -0.0884916227
## 558 4719 7 1 -0.0884592402
## 559 4361 6 1 -0.0883825564
## 560 3923 3 1 -0.0883030255
## 561 1325 7 2 -0.0882902527
## 562 6355 4 1 -0.0881379061
## 563 827 7 1 -0.0880842713
## 564 8217 4 1 -0.0880741819
## 565 112 5 7 -0.0879186562
## 566 232 7 2 -0.0877729998
## 567 5483 3 1 -0.0877647952
## 568 2583 7 2 -0.0874834382
## 569 2554 7 6 -0.0873000697
## 570 6969 3 1 -0.0871342011
## 571 325 7 2 -0.0870378171
## 572 1707 7 1 -0.0866349579
## 573 4248 7 2 -0.0865533708
## 574 7457 7 2 -0.0862665433
## 575 3225 7 2 -0.0860360347
## 576 6871 7 1 -0.0858999323
## 577 3032 3 1 -0.0858997520
## 578 602 7 2 -0.0856555672
## 579 1268 3 1 -0.0855426217
## 580 1057 7 2 -0.0849482954
## 581 3572 7 2 -0.0848997217
## 582 210 7 2 -0.0848664710
## 583 4579 7 1 -0.0848171036
## 584 2500 3 1 -0.0848010869
## 585 4263 3 6 -0.0846179902
## 586 4820 7 2 -0.0844888742
## 587 2677 3 1 -0.0843604036
## 588 4614 7 6 -0.0843058374
## 589 7463 7 2 -0.0838543668
## 590 3780 2 1 -0.0837956113
## 591 172 7 2 -0.0836422048
## 592 1384 3 1 -0.0834549584
## 593 7670 7 2 -0.0833801330
## 594 4144 7 2 -0.0833052697
## 595 5716 4 6 -0.0831605656
## 596 3231 7 2 -0.0828190719
## 597 6663 7 2 -0.0826711303
## 598 1531 3 4 -0.0820825069
## 599 7732 4 1 -0.0818921270
## 600 3386 7 2 -0.0818079967
## 601 6898 7 2 -0.0815598522
## 602 1618 7 2 -0.0814924569
## 603 5858 7 2 -0.0807400740
## 604 6016 7 2 -0.0806502211
## 605 5669 7 1 -0.0804870332
## 606 8017 7 2 -0.0804667503
## 607 537 6 1 -0.0804624343
## 608 6575 7 2 -0.0801482144
## 609 4543 7 1 -0.0797373562
## 610 490 3 1 -0.0796512088
## 611 3622 7 1 -0.0796182330
## 612 5787 6 1 -0.0793961244
## 613 1457 7 2 -0.0793850238
## 614 5620 7 2 -0.0790628383
## 615 2367 7 6 -0.0789752868
## 616 4581 6 1 -0.0788325334
## 617 5383 7 2 -0.0784141811
## 618 1378 6 1 -0.0783539039
## 619 191 6 1 -0.0783190505
## 620 6963 2 1 -0.0782170535
## 621 6626 2 1 -0.0779600206
## 622 1556 3 1 -0.0777521250
## 623 6218 7 2 -0.0772251460
## 624 5240 6 1 -0.0770555242
## 625 6937 4 1 -0.0770509156
## 626 3298 7 2 -0.0767894518
## 627 6817 4 6 -0.0767035011
## 628 124 7 1 -0.0763672725
## 629 1863 4 2 -0.0761952641
## 630 3037 3 1 -0.0761928977
## 631 5835 7 2 -0.0756692385
## 632 5860 6 1 -0.0756360597
## 633 4611 6 1 -0.0754157406
## 634 668 5 7 -0.0754016864
## 635 1938 7 2 -0.0752886584
## 636 703 3 4 -0.0752779293
## 637 7005 4 1 -0.0750124957
## 638 338 3 1 -0.0743922900
## 639 5920 7 2 -0.0740738288
## 640 2986 3 1 -0.0739593876
## 641 5559 7 2 -0.0739283555
## 642 3943 2 1 -0.0737740283
## 643 2644 7 2 -0.0733500824
## 644 3845 3 1 -0.0732090707
## 645 220 7 2 -0.0731759819
## 646 2568 3 4 -0.0729300378
## 647 1179 7 2 -0.0725779843
## 648 3841 6 1 -0.0719333103
## 649 2224 7 2 -0.0718090266
## 650 4575 7 2 -0.0717435723
## 651 1210 3 2 -0.0712496601
## 652 5962 3 1 -0.0711562664
## 653 5675 4 1 -0.0706527924
## 654 7157 2 1 -0.0704686059
## 655 8272 7 2 -0.0704303535
## 656 860 7 1 -0.0702579689
## 657 8151 2 1 -0.0702178958
## 658 8157 3 1 -0.0701633892
## 659 6524 2 1 -0.0701028323
## 660 4328 7 1 -0.0699481379
## 661 1667 5 7 -0.0698165283
## 662 1965 7 6 -0.0697536804
## 663 4787 3 1 -0.0696758835
## 664 7047 3 2 -0.0696347837
## 665 5906 3 1 -0.0694125071
## 666 246 7 2 -0.0693404837
## 667 6959 7 2 -0.0691404989
## 668 3363 3 1 -0.0690233425
## 669 2648 3 1 -0.0689104058
## 670 7499 7 2 -0.0688469238
## 671 2376 3 1 -0.0685610943
## 672 1203 7 1 -0.0681794435
## 673 3478 7 2 -0.0681406257
## 674 2988 2 1 -0.0681094928
## 675 6041 7 1 -0.0680076433
## 676 4927 2 1 -0.0678969977
## 677 3552 6 1 -0.0678762926
## 678 196 5 7 -0.0675278297
## 679 7133 3 1 -0.0674582393
## 680 3443 3 1 -0.0666474124
## 681 5283 7 1 -0.0665141808
## 682 168 6 1 -0.0664933062
## 683 241 7 1 -0.0663223415
## 684 131 2 1 -0.0663188036
## 685 6610 2 1 -0.0659783341
## 686 6599 3 1 -0.0658079919
## 687 1916 7 2 -0.0657755901
## 688 445 7 2 -0.0657218799
## 689 6589 2 1 -0.0657030897
## 690 2510 2 1 -0.0654796203
## 691 403 7 1 -0.0654791376
## 692 2890 7 1 -0.0652581016
## 693 2111 7 2 -0.0650671672
## 694 1862 3 1 -0.0648088236
## 695 133 3 2 -0.0645496488
## 696 4163 6 1 -0.0645240134
## 697 4734 7 2 -0.0641805845
## 698 2655 2 1 -0.0640945522
## 699 7325 7 2 -0.0633354230
## 700 974 4 2 -0.0632109826
## 701 2940 7 1 -0.0630969128
## 702 6489 7 2 -0.0630352414
## 703 8501 6 1 -0.0627955488
## 704 4826 4 6 -0.0627579336
## 705 2921 3 1 -0.0627578006
## 706 7070 3 1 -0.0625528647
## 707 3033 7 1 -0.0623579566
## 708 7742 6 1 -0.0620816539
## 709 2259 2 1 -0.0617437849
## 710 8250 6 1 -0.0616405487
## 711 4799 6 1 -0.0615402592
## 712 8074 7 2 -0.0613269751
## 713 2301 2 1 -0.0612173303
## 714 7647 7 2 -0.0610365500
## 715 1896 4 2 -0.0609013117
## 716 719 7 4 -0.0607650789
## 717 8630 3 4 -0.0607573605
## 718 1077 3 1 -0.0605860141
## 719 239 7 2 -0.0605006564
## 720 5919 3 1 -0.0604496944
## 721 1677 7 2 -0.0603893225
## 722 6661 2 1 -0.0600115885
## 723 276 6 1 -0.0596111605
## 724 2983 3 1 -0.0593299875
## 725 2142 3 1 -0.0592965810
## 726 3871 3 1 -0.0592878659
## 727 7309 2 1 -0.0592669754
## 728 2927 3 4 -0.0592515117
## 729 5051 2 1 -0.0592064871
## 730 5317 5 7 -0.0591947534
## 731 6513 2 1 -0.0591901823
## 732 2556 6 1 -0.0591241312
## 733 7416 4 6 -0.0591068011
## 734 916 3 1 -0.0590426302
## 735 6236 2 1 -0.0587103980
## 736 8490 3 1 -0.0582726668
## 737 4725 7 6 -0.0582499781
## 738 3116 2 1 -0.0581985673
## 739 1854 7 1 -0.0580831644
## 740 5369 7 2 -0.0579530778
## 741 8531 4 2 -0.0576177286
## 742 5521 3 1 -0.0575407652
## 743 7007 4 1 -0.0574806420
## 744 1991 7 2 -0.0573095006
## 745 5469 7 1 -0.0568182339
## 746 1922 7 1 -0.0560963933
## 747 3206 3 1 -0.0560912178
## 748 5849 3 2 -0.0559407317
## 749 8509 4 1 -0.0558433931
## 750 3501 7 2 -0.0556442979
## 751 7109 7 2 -0.0556197955
## 752 5824 4 6 -0.0555761505
## 753 2728 7 2 -0.0553977217
## 754 3670 7 2 -0.0553963319
## 755 8525 4 1 -0.0553568137
## 756 1377 7 2 -0.0553552576
## 757 4331 3 2 -0.0552542893
## 758 6382 7 2 -0.0552204560
## 759 3991 7 2 -0.0551979344
## 760 4247 3 1 -0.0551062610
## 761 4190 6 1 -0.0548905881
## 762 4165 4 1 -0.0548041537
## 763 5650 7 2 -0.0546957688
## 764 1515 7 6 -0.0546165693
## 765 6841 2 1 -0.0545703086
## 766 4131 6 1 -0.0541628287
## 767 8517 4 2 -0.0541162649
## 768 6063 4 1 -0.0539038537
## 769 1644 3 7 -0.0536367596
## 770 1352 7 1 -0.0534751746
## 771 6385 7 1 -0.0534381754
## 772 3693 7 1 -0.0529842409
## 773 5797 3 1 -0.0528200421
## 774 6206 3 1 -0.0527799258
## 775 6863 2 1 -0.0527599261
## 776 5996 2 1 -0.0526915383
## 777 5673 2 1 -0.0523734900
## 778 3114 2 1 -0.0523556652
## 779 4197 6 1 -0.0521817201
## 780 8043 4 1 -0.0520492015
## 781 7634 2 1 -0.0517388323
## 782 7329 7 2 -0.0517243782
## 783 3068 3 1 -0.0514462083
## 784 6414 7 2 -0.0513143890
## 785 8396 6 1 -0.0511813127
## 786 8513 4 1 -0.0510432094
## 787 3546 3 1 -0.0508694226
## 788 8027 4 1 -0.0506867819
## 789 4447 3 1 -0.0505658037
## 790 6787 7 2 -0.0504457521
## 791 8486 6 1 -0.0501375596
## 792 5335 2 1 -0.0500149667
## 793 2310 2 1 -0.0499394375
## 794 4093 7 2 -0.0497973533
## 795 3468 7 2 -0.0497883073
## 796 8455 2 1 -0.0495874255
## 797 3640 3 1 -0.0493620231
## 798 4653 6 1 -0.0491610329
## 799 6442 7 1 -0.0490509489
## 800 4207 2 1 -0.0489945253
## 801 5953 2 1 -0.0489628896
## 802 5083 7 2 -0.0489496001
## 803 8129 6 1 -0.0487998188
## 804 2159 4 6 -0.0487895514
## 805 5709 2 1 -0.0487138161
## 806 601 7 2 -0.0486528664
## 807 5847 7 2 -0.0485369704
## 808 3949 7 1 -0.0484384524
## 809 7540 7 2 -0.0484082769
## 810 6681 3 1 -0.0483231761
## 811 2920 3 4 -0.0482490786
## 812 1354 2 1 -0.0482458909
## 813 1580 3 1 -0.0482207187
## 814 7761 7 4 -0.0481380455
## 815 8574 4 6 -0.0481246918
## 816 6024 7 2 -0.0480015556
## 817 2143 7 1 -0.0478963030
## 818 4382 7 1 -0.0477815896
## 819 796 3 7 -0.0476761413
## 820 5409 7 1 -0.0475795266
## 821 4928 7 2 -0.0474378725
## 822 2331 7 2 -0.0473790359
## 823 2256 2 1 -0.0473707323
## 824 4856 6 1 -0.0472879152
## 825 1693 7 2 -0.0472859503
## 826 6988 3 1 -0.0471666866
## 827 710 4 1 -0.0470447878
## 828 1690 7 1 -0.0466141786
## 829 4610 6 1 -0.0465563008
## 830 5839 7 1 -0.0464101802
## 831 3933 3 4 -0.0463950794
## 832 6933 6 1 -0.0459080482
## 833 8548 7 2 -0.0458309050
## 834 4906 3 1 -0.0457668022
## 835 3569 7 2 -0.0457428862
## 836 5221 3 7 -0.0453039400
## 837 4391 7 1 -0.0450895527
## 838 1582 7 2 -0.0450725332
## 839 2681 3 7 -0.0450231566
## 840 208 7 1 -0.0447263890
## 841 271 7 1 -0.0447150955
## 842 4648 4 6 -0.0446265545
## 843 3601 7 2 -0.0445109085
## 844 5557 3 1 -0.0441877825
## 845 6006 2 1 -0.0439904428
## 846 2625 6 1 -0.0437588307
## 847 73 3 1 -0.0427204700
## 848 6189 7 1 -0.0425180725
## 849 5719 4 1 -0.0425027262
## 850 1366 4 2 -0.0423156458
## 851 3320 7 2 -0.0421577990
## 852 4989 3 1 -0.0420946607
## 853 5365 3 7 -0.0413929310
## 854 7680 2 1 -0.0412743362
## 855 4715 6 1 -0.0411159237
## 856 6638 7 1 -0.0411079259
## 857 3855 3 1 -0.0408478471
## 858 5104 6 1 -0.0406455178
## 859 1235 7 2 -0.0405583845
## 860 844 3 1 -0.0405451971
## 861 1613 5 7 -0.0404429131
## 862 1046 3 1 -0.0404372971
## 863 783 3 1 -0.0402567272
## 864 1111 7 2 -0.0392526910
## 865 4706 7 2 -0.0389359013
## 866 5952 7 2 -0.0387790134
## 867 2129 7 2 -0.0386975019
## 868 5109 3 1 -0.0386805094
## 869 2108 7 1 -0.0386380481
## 870 2464 3 1 -0.0385370322
## 871 3706 7 2 -0.0384036211
## 872 1538 3 4 -0.0382075052
## 873 4049 3 4 -0.0381131717
## 874 2324 2 1 -0.0380887531
## 875 7967 4 2 -0.0379878285
## 876 2368 7 2 -0.0379178389
## 877 5698 6 1 -0.0379035222
## 878 608 3 1 -0.0377763028
## 879 7021 7 6 -0.0377301667
## 880 4692 2 1 -0.0377281960
## 881 1817 3 1 -0.0375776830
## 882 1175 3 7 -0.0374363496
## 883 6925 2 1 -0.0372817009
## 884 6506 3 1 -0.0371550672
## 885 523 5 7 -0.0370830277
## 886 1147 3 1 -0.0370245880
## 887 3588 3 2 -0.0368637263
## 888 1126 2 1 -0.0368517853
## 889 429 3 1 -0.0368060596
## 890 364 2 1 -0.0367943919
## 891 2125 7 2 -0.0367780452
## 892 835 7 2 -0.0364843392
## 893 4060 7 1 -0.0362524370
## 894 5896 7 1 -0.0360765229
## 895 2857 7 1 -0.0359161736
## 896 109 7 2 -0.0356558213
## 897 5467 3 7 -0.0354680726
## 898 2609 2 1 -0.0353752801
## 899 5967 2 1 -0.0353274350
## 900 3975 7 2 -0.0351476116
## 901 3683 3 1 -0.0349561347
## 902 5494 6 1 -0.0347849102
## 903 7027 2 1 -0.0346133315
## 904 5074 6 1 -0.0344166863
## 905 6713 7 1 -0.0343508551
## 906 4227 5 3 -0.0342696703
## 907 2908 7 1 -0.0340822344
## 908 5760 3 2 -0.0340313696
## 909 8418 2 1 -0.0338155664
## 910 5157 7 1 -0.0337001944
## 911 5547 2 1 -0.0336678686
## 912 100 7 2 -0.0334863762
## 913 747 2 1 -0.0334294204
## 914 1897 7 2 -0.0332684635
## 915 2643 7 1 -0.0332111874
## 916 5893 7 1 -0.0329271569
## 917 8058 4 6 -0.0328771976
## 918 4504 7 1 -0.0327830316
## 919 4400 7 1 -0.0327760057
## 920 5478 7 1 -0.0327514455
## 921 3455 7 2 -0.0326961909
## 922 6463 3 2 -0.0324638123
## 923 4763 7 2 -0.0322834705
## 924 3268 3 1 -0.0322318296
## 925 995 3 1 -0.0321156236
## 926 5477 2 1 -0.0321087066
## 927 4888 7 1 -0.0320845545
## 928 8183 7 6 -0.0318886492
## 929 8093 6 1 -0.0318365961
## 930 2786 6 1 -0.0312183382
## 931 5154 4 6 -0.0311125005
## 932 6796 6 1 -0.0310521565
## 933 6161 2 1 -0.0307926069
## 934 1491 2 1 -0.0306729575
## 935 8562 4 2 -0.0306187460
## 936 5230 7 2 -0.0304149594
## 937 6215 7 2 -0.0304084371
## 938 3731 7 1 -0.0303502957
## 939 529 7 2 -0.0302547075
## 940 2564 7 1 -0.0301966316
## 941 4294 2 1 -0.0301927866
## 942 39 3 6 -0.0301772820
## 943 2235 3 1 -0.0301364374
## 944 1342 5 7 -0.0296078680
## 945 711 2 1 -0.0295466487
## 946 301 7 2 -0.0294481966
## 947 6926 3 1 -0.0293993352
## 948 2545 6 1 -0.0293519193
## 949 5768 7 1 -0.0293270705
## 950 3368 7 2 -0.0292894776
## 951 1186 7 2 -0.0290723852
## 952 2369 2 1 -0.0290091410
## 953 6828 4 2 -0.0287284970
## 954 4238 7 2 -0.0287142926
## 955 1152 7 2 -0.0286335739
## 956 2106 3 2 -0.0285017744
## 957 4595 3 7 -0.0284759779
## 958 7798 7 2 -0.0284503585
## 959 675 7 1 -0.0281301139
## 960 7031 7 2 -0.0280639381
## 961 1526 2 1 -0.0277185127
## 962 4005 2 1 -0.0276098087
## 963 1307 7 2 -0.0274985177
## 964 5314 7 2 -0.0269638903
## 965 237 3 7 -0.0265483477
## 966 4067 4 1 -0.0263373529
## 967 2602 7 2 -0.0263175335
## 968 5568 7 2 -0.0262185201
## 969 5792 2 1 -0.0261657660
## 970 6032 7 1 -0.0258717623
## 971 1743 7 2 -0.0256146460
## 972 4314 7 2 -0.0253897017
## 973 6868 4 6 -0.0252749023
## 974 8442 4 1 -0.0252108895
## 975 7811 7 2 -0.0250855704
## 976 599 3 1 -0.0249583265
## 977 3940 2 1 -0.0247562656
## 978 2878 2 1 -0.0245614410
## 979 6145 4 1 -0.0244695484
## 980 6697 2 1 -0.0244610555
## 981 2221 3 1 -0.0244332109
## 982 5936 3 1 -0.0244282695
## 983 2695 7 1 -0.0244195915
## 984 5942 4 1 -0.0240743731
## 985 4553 7 2 -0.0240283409
## 986 3113 6 1 -0.0237191847
## 987 2809 7 2 -0.0235546966
## 988 1242 3 1 -0.0234743451
## 989 3021 2 1 -0.0234673905
## 990 3893 4 2 -0.0234157560
## 991 3971 6 1 -0.0234097449
## 992 5227 7 2 -0.0233180369
## 993 6634 7 2 -0.0232151377
## 994 8454 2 1 -0.0231573460
## 995 4479 2 1 -0.0227052756
## 996 3941 6 1 -0.0225509490
## 997 4231 4 6 -0.0225296270
## 998 3682 3 1 -0.0223927228
## 999 4685 7 2 -0.0222989472
## 1000 2434 7 1 -0.0221564424
## 1001 6679 2 1 -0.0221147155
## 1002 348 3 1 -0.0219885611
## 1003 1730 2 1 -0.0219733665
## 1004 5485 2 1 -0.0219058096
## 1005 3219 6 1 -0.0219045942
## 1006 7824 3 2 -0.0217225118
## 1007 3586 5 7 -0.0217166067
## 1008 2517 3 1 -0.0216083208
## 1009 8432 4 1 -0.0215800736
## 1010 3112 7 2 -0.0213229860
## 1011 1101 2 1 -0.0211693461
## 1012 4074 6 1 -0.0211664186
## 1013 1509 7 2 -0.0211255652
## 1014 4925 7 1 -0.0208515538
## 1015 3788 7 2 -0.0208390556
## 1016 6132 2 1 -0.0207643105
## 1017 370 3 4 -0.0207209517
## 1018 6003 7 2 -0.0206675745
## 1019 1511 7 2 -0.0206075146
## 1020 1200 7 1 -0.0205708303
## 1021 6286 7 2 -0.0205136753
## 1022 5379 2 1 -0.0203095314
## 1023 5387 7 2 -0.0202094118
## 1024 316 7 1 -0.0199936277
## 1025 238 6 1 -0.0198303334
## 1026 2165 7 2 -0.0196852780
## 1027 1136 4 2 -0.0196403454
## 1028 6404 3 1 -0.0195120387
## 1029 7447 2 1 -0.0194483244
## 1030 6895 7 2 -0.0193325298
## 1031 612 4 2 -0.0189208574
## 1032 7822 6 1 -0.0188294898
## 1033 3608 6 1 -0.0187999834
## 1034 97 2 1 -0.0187324250
## 1035 857 7 2 -0.0186057407
## 1036 3184 2 1 -0.0184374304
## 1037 152 4 1 -0.0184306907
## 1038 357 2 1 -0.0184221951
## 1039 7033 7 2 -0.0183447311
## 1040 4186 4 2 -0.0183165499
## 1041 8087 3 4 -0.0182747879
## 1042 361 5 7 -0.0182122172
## 1043 7913 3 7 -0.0174531389
## 1044 3973 4 1 -0.0174122806
## 1045 1266 7 2 -0.0173297382
## 1046 2744 6 1 -0.0170842171
## 1047 6874 2 1 -0.0165421051
## 1048 5949 7 2 -0.0165315385
## 1049 6756 2 1 -0.0162729054
## 1050 6025 4 1 -0.0161972341
## 1051 6079 3 1 -0.0161262876
## 1052 4429 3 4 -0.0159258837
## 1053 6001 2 1 -0.0157076162
## 1054 90 4 1 -0.0156756237
## 1055 1560 7 2 -0.0156656157
## 1056 8099 4 6 -0.0151966352
## 1057 2685 7 2 -0.0151573308
## 1058 2172 7 1 -0.0151450116
## 1059 7555 4 1 -0.0150678456
## 1060 973 7 2 -0.0150195180
## 1061 3781 3 1 -0.0145016049
## 1062 8249 2 1 -0.0143838296
## 1063 7937 3 1 -0.0142867391
## 1064 385 2 1 -0.0139758358
## 1065 2999 3 1 -0.0139665564
## 1066 1748 7 2 -0.0138757566
## 1067 5827 7 2 -0.0138756981
## 1068 8527 4 1 -0.0137335567
## 1069 4053 7 2 -0.0135277474
## 1070 6175 6 1 -0.0135143711
## 1071 5313 7 1 -0.0134227494
## 1072 8532 4 2 -0.0132823601
## 1073 5833 3 7 -0.0132743116
## 1074 7878 2 1 -0.0132470274
## 1075 85 3 2 -0.0131009279
## 1076 5775 2 1 -0.0129912339
## 1077 2763 3 1 -0.0129302837
## 1078 7284 2 1 -0.0129168476
## 1079 1132 7 2 -0.0129145588
## 1080 8364 7 2 -0.0125117834
## 1081 6349 3 1 -0.0122239042
## 1082 3147 3 7 -0.0122017146
## 1083 5500 7 2 -0.0121570781
## 1084 1388 7 2 -0.0121262988
## 1085 5326 3 1 -0.0118228421
## 1086 3108 2 1 -0.0117019819
## 1087 8425 2 1 -0.0116709721
## 1088 7818 4 2 -0.0116189565
## 1089 5470 4 2 -0.0116138525
## 1090 8554 4 6 -0.0113999248
## 1091 3527 7 1 -0.0108265072
## 1092 4794 4 1 -0.0107018290
## 1093 1742 2 1 -0.0106646792
## 1094 136 5 7 -0.0106570157
## 1095 3039 7 2 -0.0103539306
## 1096 6080 2 1 -0.0100876912
## 1097 6981 3 1 -0.0098560815
## 1098 6430 7 1 -0.0098560659
## 1099 7960 6 1 -0.0098525209
## 1100 859 7 2 -0.0098388358
## 1101 2043 2 1 -0.0093963094
## 1102 1423 7 2 -0.0093009241
## 1103 268 7 2 -0.0092027478
## 1104 7086 7 2 -0.0091923677
## 1105 1549 7 2 -0.0090650701
## 1106 6229 7 1 -0.0089816313
## 1107 4746 7 2 -0.0088261505
## 1108 614 5 7 -0.0086811794
## 1109 5475 3 2 -0.0084755657
## 1110 6136 3 1 -0.0082202138
## 1111 218 7 2 -0.0082199846
## 1112 5232 6 1 -0.0080628543
## 1113 3556 7 2 -0.0078970983
## 1114 1343 3 7 -0.0078786005
## 1115 2411 7 2 -0.0077272343
## 1116 3339 2 1 -0.0077222503
## 1117 1909 2 1 -0.0076489753
## 1118 797 3 1 -0.0075564153
## 1119 4312 7 2 -0.0075194557
## 1120 3894 3 1 -0.0074495997
## 1121 4844 3 1 -0.0074490669
## 1122 7961 4 2 -0.0073543956
## 1123 1485 3 1 -0.0072482113
## 1124 7582 4 1 -0.0072345006
## 1125 3050 7 2 -0.0071471038
## 1126 6845 2 1 -0.0066960206
## 1127 2222 2 1 -0.0065778939
## 1128 6343 7 2 -0.0065557061
## 1129 1187 6 1 -0.0064782547
## 1130 458 7 1 -0.0063344118
## 1131 6303 4 6 -0.0062863420
## 1132 1178 6 1 -0.0062785660
## 1133 4305 4 6 -0.0059909733
## 1134 1976 3 2 -0.0059084730
## 1135 7055 2 1 -0.0058577253
## 1136 3447 3 1 -0.0057395972
## 1137 7371 2 1 -0.0056513940
## 1138 2725 3 1 -0.0056408631
## 1139 8350 6 1 -0.0053103130
## 1140 4744 7 2 -0.0052789912
## 1141 4291 7 2 -0.0052367081
## 1142 2998 3 7 -0.0049760480
## 1143 1767 7 2 -0.0045930667
## 1144 7297 2 1 -0.0043064103
## 1145 7425 3 1 -0.0042456346
## 1146 2038 6 1 -0.0041801536
## 1147 3099 6 1 -0.0040236960
## 1148 170 2 1 -0.0039754037
## 1149 766 7 1 -0.0037562487
## 1150 3543 7 2 -0.0037041183
## 1151 1125 7 2 -0.0035544035
## 1152 4172 6 1 -0.0033143970
## 1153 4515 3 7 -0.0032457759
## 1154 2833 7 2 -0.0029752164
## 1155 8528 4 1 -0.0029068558
## 1156 1543 7 6 -0.0028983955
## 1157 5872 6 2 -0.0027986931
## 1158 3406 6 1 -0.0027700981
## 1159 7252 7 4 -0.0027586200
## 1160 3905 7 2 -0.0024185787
## 1161 6501 6 1 -0.0023330639
## 1162 3193 6 1 -0.0022726989
## 1163 6842 2 1 -0.0022357146
## 1164 4101 2 1 -0.0021511920
## 1165 5627 7 2 -0.0018848117
## 1166 2468 6 1 -0.0018542767
## 1167 408 7 1 -0.0018340920
## 1168 345 6 2 -0.0017247923
## 1169 4468 3 1 -0.0015928080
## 1170 3881 2 1 -0.0014960271
## 1171 7620 3 1 -0.0013629686
## 1172 4154 3 1 -0.0009575059
## 1173 482 2 1 -0.0009178279
## 1174 2848 3 1 -0.0008305044
## 1175 2423 7 2 -0.0004238309
## 1176 5343 7 1 -0.0002970147
## 1177 2046 7 1 -0.0001746034
corrected_cluster <- sil %>%
as.data.frame() %>%
mutate(cluster=if_else(sil_width<0,neighbor,cluster))
corrected_cluster %>%
filter(sil_width<0) %>%
arrange(sil_width)
## cluster neighbor sil_width
## 1 1 1 -0.3135004935
## 2 1 1 -0.3122560482
## 3 1 1 -0.3117921649
## 4 1 1 -0.3086938780
## 5 1 1 -0.3068152191
## 6 1 1 -0.2973489201
## 7 1 1 -0.2959118748
## 8 1 1 -0.2957829785
## 9 1 1 -0.2956147089
## 10 1 1 -0.2934967087
## 11 1 1 -0.2894230881
## 12 1 1 -0.2860991163
## 13 1 1 -0.2846156119
## 14 1 1 -0.2843348161
## 15 1 1 -0.2819121200
## 16 7 7 -0.2814070392
## 17 1 1 -0.2800812253
## 18 7 7 -0.2794147055
## 19 1 1 -0.2785872319
## 20 7 7 -0.2780118826
## 21 7 7 -0.2779463958
## 22 1 1 -0.2742544175
## 23 1 1 -0.2726074742
## 24 1 1 -0.2713671433
## 25 1 1 -0.2712283873
## 26 1 1 -0.2698462102
## 27 1 1 -0.2689035676
## 28 1 1 -0.2666269984
## 29 7 7 -0.2645072082
## 30 1 1 -0.2641957726
## 31 1 1 -0.2614277771
## 32 1 1 -0.2602853169
## 33 1 1 -0.2587458954
## 34 1 1 -0.2586797936
## 35 1 1 -0.2581537529
## 36 1 1 -0.2581308581
## 37 1 1 -0.2574551660
## 38 7 7 -0.2569446442
## 39 1 1 -0.2560504809
## 40 1 1 -0.2534589022
## 41 1 1 -0.2534126913
## 42 1 1 -0.2529903398
## 43 1 1 -0.2529738846
## 44 1 1 -0.2511065824
## 45 1 1 -0.2496883577
## 46 7 7 -0.2496718580
## 47 1 1 -0.2495063656
## 48 1 1 -0.2470178557
## 49 1 1 -0.2469597194
## 50 1 1 -0.2464614720
## 51 1 1 -0.2447451145
## 52 1 1 -0.2441569020
## 53 7 7 -0.2437410508
## 54 1 1 -0.2429654220
## 55 1 1 -0.2429351927
## 56 1 1 -0.2421960489
## 57 1 1 -0.2416835330
## 58 1 1 -0.2416239678
## 59 1 1 -0.2404755888
## 60 1 1 -0.2380292320
## 61 1 1 -0.2378014516
## 62 1 1 -0.2373371474
## 63 1 1 -0.2373237703
## 64 1 1 -0.2364536165
## 65 1 1 -0.2364304233
## 66 2 2 -0.2360893674
## 67 1 1 -0.2356515680
## 68 1 1 -0.2354583389
## 69 7 7 -0.2353210221
## 70 1 1 -0.2344998530
## 71 1 1 -0.2341991936
## 72 1 1 -0.2338536624
## 73 1 1 -0.2331639152
## 74 1 1 -0.2326114419
## 75 1 1 -0.2310130804
## 76 1 1 -0.2304386031
## 77 1 1 -0.2297258413
## 78 1 1 -0.2292391944
## 79 7 7 -0.2269807125
## 80 7 7 -0.2269665811
## 81 1 1 -0.2265296405
## 82 1 1 -0.2264379660
## 83 2 2 -0.2257805711
## 84 1 1 -0.2254349632
## 85 1 1 -0.2251995631
## 86 1 1 -0.2251304161
## 87 1 1 -0.2247610157
## 88 1 1 -0.2236371460
## 89 1 1 -0.2233088450
## 90 1 1 -0.2229488485
## 91 2 2 -0.2225089828
## 92 1 1 -0.2221381943
## 93 1 1 -0.2213142443
## 94 1 1 -0.2200477050
## 95 1 1 -0.2190423804
## 96 1 1 -0.2186190345
## 97 1 1 -0.2175686282
## 98 1 1 -0.2166225171
## 99 1 1 -0.2155669099
## 100 1 1 -0.2153552585
## 101 1 1 -0.2147043241
## 102 2 2 -0.2145502704
## 103 1 1 -0.2140194309
## 104 1 1 -0.2138329655
## 105 1 1 -0.2138216417
## 106 7 7 -0.2116652183
## 107 7 7 -0.2112859953
## 108 1 1 -0.2112495960
## 109 1 1 -0.2110173426
## 110 1 1 -0.2109469891
## 111 1 1 -0.2108146378
## 112 1 1 -0.2106647712
## 113 2 2 -0.2101422969
## 114 7 7 -0.2100419597
## 115 2 2 -0.2090088461
## 116 1 1 -0.2085306723
## 117 1 1 -0.2083357000
## 118 1 1 -0.2082544874
## 119 2 2 -0.2081491643
## 120 7 7 -0.2071455019
## 121 1 1 -0.2071229304
## 122 1 1 -0.2066538933
## 123 1 1 -0.2065661603
## 124 1 1 -0.2063841567
## 125 1 1 -0.2060994254
## 126 1 1 -0.2055496730
## 127 1 1 -0.2054249437
## 128 1 1 -0.2052798485
## 129 1 1 -0.2052787020
## 130 1 1 -0.2052738211
## 131 2 2 -0.2052246770
## 132 1 1 -0.2051958287
## 133 2 2 -0.2048318391
## 134 1 1 -0.2046308719
## 135 7 7 -0.2042198540
## 136 1 1 -0.2038906686
## 137 2 2 -0.2030462582
## 138 1 1 -0.2002831002
## 139 1 1 -0.1990803182
## 140 1 1 -0.1988824921
## 141 1 1 -0.1979751391
## 142 1 1 -0.1969548533
## 143 1 1 -0.1969517956
## 144 1 1 -0.1968886367
## 145 1 1 -0.1967693994
## 146 1 1 -0.1961227852
## 147 1 1 -0.1957415760
## 148 2 2 -0.1955453736
## 149 1 1 -0.1954043731
## 150 2 2 -0.1950532015
## 151 1 1 -0.1947045824
## 152 1 1 -0.1946829224
## 153 7 7 -0.1943260143
## 154 2 2 -0.1935226810
## 155 1 1 -0.1934327892
## 156 1 1 -0.1931384746
## 157 1 1 -0.1928072392
## 158 1 1 -0.1918421719
## 159 1 1 -0.1914270169
## 160 2 2 -0.1913885085
## 161 2 2 -0.1899148183
## 162 7 7 -0.1891690446
## 163 2 2 -0.1883597706
## 164 2 2 -0.1878366198
## 165 2 2 -0.1877373034
## 166 2 2 -0.1861079359
## 167 2 2 -0.1859822510
## 168 1 1 -0.1855673354
## 169 1 1 -0.1855245848
## 170 2 2 -0.1853726474
## 171 2 2 -0.1848635909
## 172 1 1 -0.1842779671
## 173 2 2 -0.1805901159
## 174 1 1 -0.1804155810
## 175 2 2 -0.1803234170
## 176 1 1 -0.1798386844
## 177 1 1 -0.1787309490
## 178 1 1 -0.1781634054
## 179 2 2 -0.1780600480
## 180 1 1 -0.1779571893
## 181 1 1 -0.1776722215
## 182 2 2 -0.1775170893
## 183 1 1 -0.1767424309
## 184 1 1 -0.1759008413
## 185 1 1 -0.1757086949
## 186 1 1 -0.1755385095
## 187 7 7 -0.1746754913
## 188 1 1 -0.1746530401
## 189 1 1 -0.1742044892
## 190 2 2 -0.1741885084
## 191 1 1 -0.1740247213
## 192 2 2 -0.1730562058
## 193 2 2 -0.1729578579
## 194 1 1 -0.1719653408
## 195 2 2 -0.1716205172
## 196 1 1 -0.1715643534
## 197 1 1 -0.1712457944
## 198 1 1 -0.1712404879
## 199 1 1 -0.1711647023
## 200 1 1 -0.1710100806
## 201 1 1 -0.1709621429
## 202 2 2 -0.1709582292
## 203 2 2 -0.1707546923
## 204 2 2 -0.1704649809
## 205 2 2 -0.1691893263
## 206 2 2 -0.1690940790
## 207 1 1 -0.1690770420
## 208 1 1 -0.1688683539
## 209 1 1 -0.1684391297
## 210 2 2 -0.1682366891
## 211 1 1 -0.1680460870
## 212 2 2 -0.1674616247
## 213 1 1 -0.1673653639
## 214 2 2 -0.1669990685
## 215 1 1 -0.1669745148
## 216 2 2 -0.1667254205
## 217 2 2 -0.1665176750
## 218 1 1 -0.1663549831
## 219 2 2 -0.1659241524
## 220 7 7 -0.1657289293
## 221 2 2 -0.1655667392
## 222 2 2 -0.1637442847
## 223 1 1 -0.1631491195
## 224 1 1 -0.1623227746
## 225 7 7 -0.1621684411
## 226 2 2 -0.1621361647
## 227 1 1 -0.1618161057
## 228 2 2 -0.1613216101
## 229 2 2 -0.1611643593
## 230 1 1 -0.1608945464
## 231 2 2 -0.1599299943
## 232 1 1 -0.1597370712
## 233 1 1 -0.1595623701
## 234 1 1 -0.1592162150
## 235 2 2 -0.1585974033
## 236 1 1 -0.1585760851
## 237 1 1 -0.1579443900
## 238 1 1 -0.1578160523
## 239 7 7 -0.1576940821
## 240 1 1 -0.1572285617
## 241 2 2 -0.1571634150
## 242 2 2 -0.1563808383
## 243 2 2 -0.1563265223
## 244 1 1 -0.1561411657
## 245 1 1 -0.1560738033
## 246 2 2 -0.1560675772
## 247 6 6 -0.1559889204
## 248 2 2 -0.1557974722
## 249 1 1 -0.1551330352
## 250 6 6 -0.1545050169
## 251 7 7 -0.1544482667
## 252 1 1 -0.1538489102
## 253 2 2 -0.1537775095
## 254 2 2 -0.1534139440
## 255 1 1 -0.1529294475
## 256 2 2 -0.1529091397
## 257 2 2 -0.1528173168
## 258 1 1 -0.1526473866
## 259 1 1 -0.1516530553
## 260 1 1 -0.1512137348
## 261 2 2 -0.1508621033
## 262 1 1 -0.1496807863
## 263 1 1 -0.1492366619
## 264 2 2 -0.1491997774
## 265 1 1 -0.1489147311
## 266 1 1 -0.1487141447
## 267 2 2 -0.1485630190
## 268 1 1 -0.1484213027
## 269 7 7 -0.1483567830
## 270 1 1 -0.1480163197
## 271 2 2 -0.1479326811
## 272 2 2 -0.1474148209
## 273 2 2 -0.1472638279
## 274 1 1 -0.1471056786
## 275 1 1 -0.1469502356
## 276 2 2 -0.1469014824
## 277 1 1 -0.1468951606
## 278 1 1 -0.1466288581
## 279 2 2 -0.1463775652
## 280 1 1 -0.1463578423
## 281 1 1 -0.1462269990
## 282 2 2 -0.1461867571
## 283 1 1 -0.1445437613
## 284 1 1 -0.1445300295
## 285 2 2 -0.1442538637
## 286 2 2 -0.1441381942
## 287 1 1 -0.1441293852
## 288 1 1 -0.1440975867
## 289 2 2 -0.1436065830
## 290 7 7 -0.1429249141
## 291 1 1 -0.1425607764
## 292 1 1 -0.1424827207
## 293 1 1 -0.1422576503
## 294 2 2 -0.1421350828
## 295 1 1 -0.1420646854
## 296 2 2 -0.1420160146
## 297 1 1 -0.1415904775
## 298 1 1 -0.1412429605
## 299 1 1 -0.1411637227
## 300 1 1 -0.1408238121
## 301 1 1 -0.1405851026
## 302 2 2 -0.1400859966
## 303 2 2 -0.1400373855
## 304 1 1 -0.1399696496
## 305 1 1 -0.1399500417
## 306 2 2 -0.1399136776
## 307 1 1 -0.1395774160
## 308 1 1 -0.1392482109
## 309 2 2 -0.1391964131
## 310 1 1 -0.1391332120
## 311 1 1 -0.1388385436
## 312 1 1 -0.1385920959
## 313 2 2 -0.1384933346
## 314 2 2 -0.1384148590
## 315 2 2 -0.1381853559
## 316 2 2 -0.1378186156
## 317 1 1 -0.1376415867
## 318 1 1 -0.1374237208
## 319 1 1 -0.1373394724
## 320 2 2 -0.1372949822
## 321 2 2 -0.1372883450
## 322 1 1 -0.1371016205
## 323 2 2 -0.1366977208
## 324 2 2 -0.1366431006
## 325 1 1 -0.1366023055
## 326 1 1 -0.1365133410
## 327 1 1 -0.1364072927
## 328 2 2 -0.1362818837
## 329 2 2 -0.1360102445
## 330 1 1 -0.1359511995
## 331 2 2 -0.1358120673
## 332 2 2 -0.1357898940
## 333 2 2 -0.1356341821
## 334 1 1 -0.1354333754
## 335 1 1 -0.1353173381
## 336 2 2 -0.1350076493
## 337 1 1 -0.1349861593
## 338 1 1 -0.1347417892
## 339 2 2 -0.1337725964
## 340 1 1 -0.1330140271
## 341 1 1 -0.1328776997
## 342 1 1 -0.1327391541
## 343 2 2 -0.1325873829
## 344 1 1 -0.1324068257
## 345 2 2 -0.1318286277
## 346 2 2 -0.1316668389
## 347 1 1 -0.1315889652
## 348 1 1 -0.1315886625
## 349 1 1 -0.1315583704
## 350 2 2 -0.1315284952
## 351 2 2 -0.1315111026
## 352 1 1 -0.1310796067
## 353 1 1 -0.1306601042
## 354 2 2 -0.1301626667
## 355 1 1 -0.1300713912
## 356 1 1 -0.1299673091
## 357 4 4 -0.1298130135
## 358 2 2 -0.1296361308
## 359 1 1 -0.1294124587
## 360 1 1 -0.1289461458
## 361 1 1 -0.1283394570
## 362 1 1 -0.1282873349
## 363 6 6 -0.1281867734
## 364 2 2 -0.1277077385
## 365 2 2 -0.1270211592
## 366 2 2 -0.1267207319
## 367 2 2 -0.1266457495
## 368 2 2 -0.1263783697
## 369 1 1 -0.1261298119
## 370 2 2 -0.1261183229
## 371 2 2 -0.1260977208
## 372 1 1 -0.1255196840
## 373 1 1 -0.1252964299
## 374 2 2 -0.1250074176
## 375 1 1 -0.1249665263
## 376 1 1 -0.1244905055
## 377 1 1 -0.1239208053
## 378 1 1 -0.1232898696
## 379 2 2 -0.1229927779
## 380 2 2 -0.1227217631
## 381 1 1 -0.1225170895
## 382 1 1 -0.1224566056
## 383 1 1 -0.1224426732
## 384 1 1 -0.1217177923
## 385 2 2 -0.1217067352
## 386 1 1 -0.1214907017
## 387 1 1 -0.1211255504
## 388 2 2 -0.1209195009
## 389 1 1 -0.1207504994
## 390 1 1 -0.1206685199
## 391 1 1 -0.1206656778
## 392 1 1 -0.1206265136
## 393 1 1 -0.1203828972
## 394 2 2 -0.1202505511
## 395 2 2 -0.1200986603
## 396 2 2 -0.1200646396
## 397 1 1 -0.1199124982
## 398 2 2 -0.1197951416
## 399 2 2 -0.1196485140
## 400 1 1 -0.1193041056
## 401 2 2 -0.1191992512
## 402 1 1 -0.1190819233
## 403 2 2 -0.1184299455
## 404 1 1 -0.1183566081
## 405 1 1 -0.1179517343
## 406 1 1 -0.1171432927
## 407 2 2 -0.1169667449
## 408 1 1 -0.1167256369
## 409 1 1 -0.1165167328
## 410 1 1 -0.1162706362
## 411 1 1 -0.1159960722
## 412 7 7 -0.1156372850
## 413 1 1 -0.1155824634
## 414 1 1 -0.1154616000
## 415 2 2 -0.1153378258
## 416 1 1 -0.1153056804
## 417 1 1 -0.1145717587
## 418 6 6 -0.1144320323
## 419 7 7 -0.1144206315
## 420 2 2 -0.1143092824
## 421 1 1 -0.1141959563
## 422 2 2 -0.1133970548
## 423 1 1 -0.1131284611
## 424 7 7 -0.1130744506
## 425 2 2 -0.1130646570
## 426 1 1 -0.1129665083
## 427 1 1 -0.1127878337
## 428 1 1 -0.1126384281
## 429 1 1 -0.1116982472
## 430 1 1 -0.1116036030
## 431 2 2 -0.1115920250
## 432 7 7 -0.1111914960
## 433 2 2 -0.1109379746
## 434 2 2 -0.1102667650
## 435 1 1 -0.1094435354
## 436 1 1 -0.1093927198
## 437 1 1 -0.1093302574
## 438 2 2 -0.1092852700
## 439 1 1 -0.1090208523
## 440 2 2 -0.1084529429
## 441 1 1 -0.1080934506
## 442 1 1 -0.1080565803
## 443 1 1 -0.1079224513
## 444 1 1 -0.1076727253
## 445 1 1 -0.1072924002
## 446 1 1 -0.1070231066
## 447 2 2 -0.1063124703
## 448 1 1 -0.1063031967
## 449 2 2 -0.1061714312
## 450 1 1 -0.1058011247
## 451 1 1 -0.1057897218
## 452 2 2 -0.1056571518
## 453 7 7 -0.1056066029
## 454 2 2 -0.1054339660
## 455 1 1 -0.1051083284
## 456 2 2 -0.1048308007
## 457 1 1 -0.1046507299
## 458 1 1 -0.1045872441
## 459 1 1 -0.1045176409
## 460 2 2 -0.1044123613
## 461 1 1 -0.1042355319
## 462 1 1 -0.1041477829
## 463 7 7 -0.1040608293
## 464 1 1 -0.1039533498
## 465 1 1 -0.1039318342
## 466 1 1 -0.1038517664
## 467 2 2 -0.1033409479
## 468 2 2 -0.1031434639
## 469 1 1 -0.1026568451
## 470 1 1 -0.1023727594
## 471 2 2 -0.1021565671
## 472 2 2 -0.1019897503
## 473 1 1 -0.1011613202
## 474 2 2 -0.1009201869
## 475 2 2 -0.1007415903
## 476 2 2 -0.1003761780
## 477 4 4 -0.1001865859
## 478 1 1 -0.0999997058
## 479 1 1 -0.0999948295
## 480 1 1 -0.0998471781
## 481 1 1 -0.0998095095
## 482 2 2 -0.0995715927
## 483 4 4 -0.0995314016
## 484 2 2 -0.0993361131
## 485 1 1 -0.0993122688
## 486 2 2 -0.0991763180
## 487 2 2 -0.0987830285
## 488 1 1 -0.0987762988
## 489 1 1 -0.0987019797
## 490 1 1 -0.0986487111
## 491 1 1 -0.0986272466
## 492 2 2 -0.0985676214
## 493 1 1 -0.0985637646
## 494 2 2 -0.0983569646
## 495 1 1 -0.0982163572
## 496 1 1 -0.0981065161
## 497 2 2 -0.0974222147
## 498 1 1 -0.0973757665
## 499 2 2 -0.0970051302
## 500 1 1 -0.0969134583
## 501 1 1 -0.0966405307
## 502 1 1 -0.0962464395
## 503 2 2 -0.0961840924
## 504 1 1 -0.0961592701
## 505 2 2 -0.0958974055
## 506 1 1 -0.0958017725
## 507 2 2 -0.0956620699
## 508 2 2 -0.0955572135
## 509 1 1 -0.0955532143
## 510 1 1 -0.0954208328
## 511 1 1 -0.0953465966
## 512 1 1 -0.0953307928
## 513 2 2 -0.0950794193
## 514 2 2 -0.0948909549
## 515 1 1 -0.0948734137
## 516 1 1 -0.0948591321
## 517 2 2 -0.0944561606
## 518 2 2 -0.0943935988
## 519 2 2 -0.0942644646
## 520 2 2 -0.0938689559
## 521 1 1 -0.0938372272
## 522 2 2 -0.0938212830
## 523 2 2 -0.0938151516
## 524 2 2 -0.0931344356
## 525 1 1 -0.0930828035
## 526 1 1 -0.0928454535
## 527 2 2 -0.0925174471
## 528 1 1 -0.0924406337
## 529 1 1 -0.0919558827
## 530 1 1 -0.0916579589
## 531 1 1 -0.0913631633
## 532 2 2 -0.0908173910
## 533 2 2 -0.0907491808
## 534 1 1 -0.0907477080
## 535 1 1 -0.0907146495
## 536 1 1 -0.0906412381
## 537 2 2 -0.0904704219
## 538 1 1 -0.0904389078
## 539 1 1 -0.0903726799
## 540 1 1 -0.0902993345
## 541 2 2 -0.0902743435
## 542 2 2 -0.0901652099
## 543 2 2 -0.0899289053
## 544 2 2 -0.0899234128
## 545 2 2 -0.0898205827
## 546 2 2 -0.0896416722
## 547 1 1 -0.0895776047
## 548 1 1 -0.0894192605
## 549 7 7 -0.0892824640
## 550 2 2 -0.0892778044
## 551 1 1 -0.0892238299
## 552 2 2 -0.0891222905
## 553 2 2 -0.0891040592
## 554 1 1 -0.0890498844
## 555 1 1 -0.0890304275
## 556 1 1 -0.0887813385
## 557 1 1 -0.0884916227
## 558 1 1 -0.0884592402
## 559 1 1 -0.0883825564
## 560 1 1 -0.0883030255
## 561 2 2 -0.0882902527
## 562 1 1 -0.0881379061
## 563 1 1 -0.0880842713
## 564 1 1 -0.0880741819
## 565 7 7 -0.0879186562
## 566 2 2 -0.0877729998
## 567 1 1 -0.0877647952
## 568 2 2 -0.0874834382
## 569 6 6 -0.0873000697
## 570 1 1 -0.0871342011
## 571 2 2 -0.0870378171
## 572 1 1 -0.0866349579
## 573 2 2 -0.0865533708
## 574 2 2 -0.0862665433
## 575 2 2 -0.0860360347
## 576 1 1 -0.0858999323
## 577 1 1 -0.0858997520
## 578 2 2 -0.0856555672
## 579 1 1 -0.0855426217
## 580 2 2 -0.0849482954
## 581 2 2 -0.0848997217
## 582 2 2 -0.0848664710
## 583 1 1 -0.0848171036
## 584 1 1 -0.0848010869
## 585 6 6 -0.0846179902
## 586 2 2 -0.0844888742
## 587 1 1 -0.0843604036
## 588 6 6 -0.0843058374
## 589 2 2 -0.0838543668
## 590 1 1 -0.0837956113
## 591 2 2 -0.0836422048
## 592 1 1 -0.0834549584
## 593 2 2 -0.0833801330
## 594 2 2 -0.0833052697
## 595 6 6 -0.0831605656
## 596 2 2 -0.0828190719
## 597 2 2 -0.0826711303
## 598 4 4 -0.0820825069
## 599 1 1 -0.0818921270
## 600 2 2 -0.0818079967
## 601 2 2 -0.0815598522
## 602 2 2 -0.0814924569
## 603 2 2 -0.0807400740
## 604 2 2 -0.0806502211
## 605 1 1 -0.0804870332
## 606 2 2 -0.0804667503
## 607 1 1 -0.0804624343
## 608 2 2 -0.0801482144
## 609 1 1 -0.0797373562
## 610 1 1 -0.0796512088
## 611 1 1 -0.0796182330
## 612 1 1 -0.0793961244
## 613 2 2 -0.0793850238
## 614 2 2 -0.0790628383
## 615 6 6 -0.0789752868
## 616 1 1 -0.0788325334
## 617 2 2 -0.0784141811
## 618 1 1 -0.0783539039
## 619 1 1 -0.0783190505
## 620 1 1 -0.0782170535
## 621 1 1 -0.0779600206
## 622 1 1 -0.0777521250
## 623 2 2 -0.0772251460
## 624 1 1 -0.0770555242
## 625 1 1 -0.0770509156
## 626 2 2 -0.0767894518
## 627 6 6 -0.0767035011
## 628 1 1 -0.0763672725
## 629 2 2 -0.0761952641
## 630 1 1 -0.0761928977
## 631 2 2 -0.0756692385
## 632 1 1 -0.0756360597
## 633 1 1 -0.0754157406
## 634 7 7 -0.0754016864
## 635 2 2 -0.0752886584
## 636 4 4 -0.0752779293
## 637 1 1 -0.0750124957
## 638 1 1 -0.0743922900
## 639 2 2 -0.0740738288
## 640 1 1 -0.0739593876
## 641 2 2 -0.0739283555
## 642 1 1 -0.0737740283
## 643 2 2 -0.0733500824
## 644 1 1 -0.0732090707
## 645 2 2 -0.0731759819
## 646 4 4 -0.0729300378
## 647 2 2 -0.0725779843
## 648 1 1 -0.0719333103
## 649 2 2 -0.0718090266
## 650 2 2 -0.0717435723
## 651 2 2 -0.0712496601
## 652 1 1 -0.0711562664
## 653 1 1 -0.0706527924
## 654 1 1 -0.0704686059
## 655 2 2 -0.0704303535
## 656 1 1 -0.0702579689
## 657 1 1 -0.0702178958
## 658 1 1 -0.0701633892
## 659 1 1 -0.0701028323
## 660 1 1 -0.0699481379
## 661 7 7 -0.0698165283
## 662 6 6 -0.0697536804
## 663 1 1 -0.0696758835
## 664 2 2 -0.0696347837
## 665 1 1 -0.0694125071
## 666 2 2 -0.0693404837
## 667 2 2 -0.0691404989
## 668 1 1 -0.0690233425
## 669 1 1 -0.0689104058
## 670 2 2 -0.0688469238
## 671 1 1 -0.0685610943
## 672 1 1 -0.0681794435
## 673 2 2 -0.0681406257
## 674 1 1 -0.0681094928
## 675 1 1 -0.0680076433
## 676 1 1 -0.0678969977
## 677 1 1 -0.0678762926
## 678 7 7 -0.0675278297
## 679 1 1 -0.0674582393
## 680 1 1 -0.0666474124
## 681 1 1 -0.0665141808
## 682 1 1 -0.0664933062
## 683 1 1 -0.0663223415
## 684 1 1 -0.0663188036
## 685 1 1 -0.0659783341
## 686 1 1 -0.0658079919
## 687 2 2 -0.0657755901
## 688 2 2 -0.0657218799
## 689 1 1 -0.0657030897
## 690 1 1 -0.0654796203
## 691 1 1 -0.0654791376
## 692 1 1 -0.0652581016
## 693 2 2 -0.0650671672
## 694 1 1 -0.0648088236
## 695 2 2 -0.0645496488
## 696 1 1 -0.0645240134
## 697 2 2 -0.0641805845
## 698 1 1 -0.0640945522
## 699 2 2 -0.0633354230
## 700 2 2 -0.0632109826
## 701 1 1 -0.0630969128
## 702 2 2 -0.0630352414
## 703 1 1 -0.0627955488
## 704 6 6 -0.0627579336
## 705 1 1 -0.0627578006
## 706 1 1 -0.0625528647
## 707 1 1 -0.0623579566
## 708 1 1 -0.0620816539
## 709 1 1 -0.0617437849
## 710 1 1 -0.0616405487
## 711 1 1 -0.0615402592
## 712 2 2 -0.0613269751
## 713 1 1 -0.0612173303
## 714 2 2 -0.0610365500
## 715 2 2 -0.0609013117
## 716 4 4 -0.0607650789
## 717 4 4 -0.0607573605
## 718 1 1 -0.0605860141
## 719 2 2 -0.0605006564
## 720 1 1 -0.0604496944
## 721 2 2 -0.0603893225
## 722 1 1 -0.0600115885
## 723 1 1 -0.0596111605
## 724 1 1 -0.0593299875
## 725 1 1 -0.0592965810
## 726 1 1 -0.0592878659
## 727 1 1 -0.0592669754
## 728 4 4 -0.0592515117
## 729 1 1 -0.0592064871
## 730 7 7 -0.0591947534
## 731 1 1 -0.0591901823
## 732 1 1 -0.0591241312
## 733 6 6 -0.0591068011
## 734 1 1 -0.0590426302
## 735 1 1 -0.0587103980
## 736 1 1 -0.0582726668
## 737 6 6 -0.0582499781
## 738 1 1 -0.0581985673
## 739 1 1 -0.0580831644
## 740 2 2 -0.0579530778
## 741 2 2 -0.0576177286
## 742 1 1 -0.0575407652
## 743 1 1 -0.0574806420
## 744 2 2 -0.0573095006
## 745 1 1 -0.0568182339
## 746 1 1 -0.0560963933
## 747 1 1 -0.0560912178
## 748 2 2 -0.0559407317
## 749 1 1 -0.0558433931
## 750 2 2 -0.0556442979
## 751 2 2 -0.0556197955
## 752 6 6 -0.0555761505
## 753 2 2 -0.0553977217
## 754 2 2 -0.0553963319
## 755 1 1 -0.0553568137
## 756 2 2 -0.0553552576
## 757 2 2 -0.0552542893
## 758 2 2 -0.0552204560
## 759 2 2 -0.0551979344
## 760 1 1 -0.0551062610
## 761 1 1 -0.0548905881
## 762 1 1 -0.0548041537
## 763 2 2 -0.0546957688
## 764 6 6 -0.0546165693
## 765 1 1 -0.0545703086
## 766 1 1 -0.0541628287
## 767 2 2 -0.0541162649
## 768 1 1 -0.0539038537
## 769 7 7 -0.0536367596
## 770 1 1 -0.0534751746
## 771 1 1 -0.0534381754
## 772 1 1 -0.0529842409
## 773 1 1 -0.0528200421
## 774 1 1 -0.0527799258
## 775 1 1 -0.0527599261
## 776 1 1 -0.0526915383
## 777 1 1 -0.0523734900
## 778 1 1 -0.0523556652
## 779 1 1 -0.0521817201
## 780 1 1 -0.0520492015
## 781 1 1 -0.0517388323
## 782 2 2 -0.0517243782
## 783 1 1 -0.0514462083
## 784 2 2 -0.0513143890
## 785 1 1 -0.0511813127
## 786 1 1 -0.0510432094
## 787 1 1 -0.0508694226
## 788 1 1 -0.0506867819
## 789 1 1 -0.0505658037
## 790 2 2 -0.0504457521
## 791 1 1 -0.0501375596
## 792 1 1 -0.0500149667
## 793 1 1 -0.0499394375
## 794 2 2 -0.0497973533
## 795 2 2 -0.0497883073
## 796 1 1 -0.0495874255
## 797 1 1 -0.0493620231
## 798 1 1 -0.0491610329
## 799 1 1 -0.0490509489
## 800 1 1 -0.0489945253
## 801 1 1 -0.0489628896
## 802 2 2 -0.0489496001
## 803 1 1 -0.0487998188
## 804 6 6 -0.0487895514
## 805 1 1 -0.0487138161
## 806 2 2 -0.0486528664
## 807 2 2 -0.0485369704
## 808 1 1 -0.0484384524
## 809 2 2 -0.0484082769
## 810 1 1 -0.0483231761
## 811 4 4 -0.0482490786
## 812 1 1 -0.0482458909
## 813 1 1 -0.0482207187
## 814 4 4 -0.0481380455
## 815 6 6 -0.0481246918
## 816 2 2 -0.0480015556
## 817 1 1 -0.0478963030
## 818 1 1 -0.0477815896
## 819 7 7 -0.0476761413
## 820 1 1 -0.0475795266
## 821 2 2 -0.0474378725
## 822 2 2 -0.0473790359
## 823 1 1 -0.0473707323
## 824 1 1 -0.0472879152
## 825 2 2 -0.0472859503
## 826 1 1 -0.0471666866
## 827 1 1 -0.0470447878
## 828 1 1 -0.0466141786
## 829 1 1 -0.0465563008
## 830 1 1 -0.0464101802
## 831 4 4 -0.0463950794
## 832 1 1 -0.0459080482
## 833 2 2 -0.0458309050
## 834 1 1 -0.0457668022
## 835 2 2 -0.0457428862
## 836 7 7 -0.0453039400
## 837 1 1 -0.0450895527
## 838 2 2 -0.0450725332
## 839 7 7 -0.0450231566
## 840 1 1 -0.0447263890
## 841 1 1 -0.0447150955
## 842 6 6 -0.0446265545
## 843 2 2 -0.0445109085
## 844 1 1 -0.0441877825
## 845 1 1 -0.0439904428
## 846 1 1 -0.0437588307
## 847 1 1 -0.0427204700
## 848 1 1 -0.0425180725
## 849 1 1 -0.0425027262
## 850 2 2 -0.0423156458
## 851 2 2 -0.0421577990
## 852 1 1 -0.0420946607
## 853 7 7 -0.0413929310
## 854 1 1 -0.0412743362
## 855 1 1 -0.0411159237
## 856 1 1 -0.0411079259
## 857 1 1 -0.0408478471
## 858 1 1 -0.0406455178
## 859 2 2 -0.0405583845
## 860 1 1 -0.0405451971
## 861 7 7 -0.0404429131
## 862 1 1 -0.0404372971
## 863 1 1 -0.0402567272
## 864 2 2 -0.0392526910
## 865 2 2 -0.0389359013
## 866 2 2 -0.0387790134
## 867 2 2 -0.0386975019
## 868 1 1 -0.0386805094
## 869 1 1 -0.0386380481
## 870 1 1 -0.0385370322
## 871 2 2 -0.0384036211
## 872 4 4 -0.0382075052
## 873 4 4 -0.0381131717
## 874 1 1 -0.0380887531
## 875 2 2 -0.0379878285
## 876 2 2 -0.0379178389
## 877 1 1 -0.0379035222
## 878 1 1 -0.0377763028
## 879 6 6 -0.0377301667
## 880 1 1 -0.0377281960
## 881 1 1 -0.0375776830
## 882 7 7 -0.0374363496
## 883 1 1 -0.0372817009
## 884 1 1 -0.0371550672
## 885 7 7 -0.0370830277
## 886 1 1 -0.0370245880
## 887 2 2 -0.0368637263
## 888 1 1 -0.0368517853
## 889 1 1 -0.0368060596
## 890 1 1 -0.0367943919
## 891 2 2 -0.0367780452
## 892 2 2 -0.0364843392
## 893 1 1 -0.0362524370
## 894 1 1 -0.0360765229
## 895 1 1 -0.0359161736
## 896 2 2 -0.0356558213
## 897 7 7 -0.0354680726
## 898 1 1 -0.0353752801
## 899 1 1 -0.0353274350
## 900 2 2 -0.0351476116
## 901 1 1 -0.0349561347
## 902 1 1 -0.0347849102
## 903 1 1 -0.0346133315
## 904 1 1 -0.0344166863
## 905 1 1 -0.0343508551
## 906 3 3 -0.0342696703
## 907 1 1 -0.0340822344
## 908 2 2 -0.0340313696
## 909 1 1 -0.0338155664
## 910 1 1 -0.0337001944
## 911 1 1 -0.0336678686
## 912 2 2 -0.0334863762
## 913 1 1 -0.0334294204
## 914 2 2 -0.0332684635
## 915 1 1 -0.0332111874
## 916 1 1 -0.0329271569
## 917 6 6 -0.0328771976
## 918 1 1 -0.0327830316
## 919 1 1 -0.0327760057
## 920 1 1 -0.0327514455
## 921 2 2 -0.0326961909
## 922 2 2 -0.0324638123
## 923 2 2 -0.0322834705
## 924 1 1 -0.0322318296
## 925 1 1 -0.0321156236
## 926 1 1 -0.0321087066
## 927 1 1 -0.0320845545
## 928 6 6 -0.0318886492
## 929 1 1 -0.0318365961
## 930 1 1 -0.0312183382
## 931 6 6 -0.0311125005
## 932 1 1 -0.0310521565
## 933 1 1 -0.0307926069
## 934 1 1 -0.0306729575
## 935 2 2 -0.0306187460
## 936 2 2 -0.0304149594
## 937 2 2 -0.0304084371
## 938 1 1 -0.0303502957
## 939 2 2 -0.0302547075
## 940 1 1 -0.0301966316
## 941 1 1 -0.0301927866
## 942 6 6 -0.0301772820
## 943 1 1 -0.0301364374
## 944 7 7 -0.0296078680
## 945 1 1 -0.0295466487
## 946 2 2 -0.0294481966
## 947 1 1 -0.0293993352
## 948 1 1 -0.0293519193
## 949 1 1 -0.0293270705
## 950 2 2 -0.0292894776
## 951 2 2 -0.0290723852
## 952 1 1 -0.0290091410
## 953 2 2 -0.0287284970
## 954 2 2 -0.0287142926
## 955 2 2 -0.0286335739
## 956 2 2 -0.0285017744
## 957 7 7 -0.0284759779
## 958 2 2 -0.0284503585
## 959 1 1 -0.0281301139
## 960 2 2 -0.0280639381
## 961 1 1 -0.0277185127
## 962 1 1 -0.0276098087
## 963 2 2 -0.0274985177
## 964 2 2 -0.0269638903
## 965 7 7 -0.0265483477
## 966 1 1 -0.0263373529
## 967 2 2 -0.0263175335
## 968 2 2 -0.0262185201
## 969 1 1 -0.0261657660
## 970 1 1 -0.0258717623
## 971 2 2 -0.0256146460
## 972 2 2 -0.0253897017
## 973 6 6 -0.0252749023
## 974 1 1 -0.0252108895
## 975 2 2 -0.0250855704
## 976 1 1 -0.0249583265
## 977 1 1 -0.0247562656
## 978 1 1 -0.0245614410
## 979 1 1 -0.0244695484
## 980 1 1 -0.0244610555
## 981 1 1 -0.0244332109
## 982 1 1 -0.0244282695
## 983 1 1 -0.0244195915
## 984 1 1 -0.0240743731
## 985 2 2 -0.0240283409
## 986 1 1 -0.0237191847
## 987 2 2 -0.0235546966
## 988 1 1 -0.0234743451
## 989 1 1 -0.0234673905
## 990 2 2 -0.0234157560
## 991 1 1 -0.0234097449
## 992 2 2 -0.0233180369
## 993 2 2 -0.0232151377
## 994 1 1 -0.0231573460
## 995 1 1 -0.0227052756
## 996 1 1 -0.0225509490
## 997 6 6 -0.0225296270
## 998 1 1 -0.0223927228
## 999 2 2 -0.0222989472
## 1000 1 1 -0.0221564424
## 1001 1 1 -0.0221147155
## 1002 1 1 -0.0219885611
## 1003 1 1 -0.0219733665
## 1004 1 1 -0.0219058096
## 1005 1 1 -0.0219045942
## 1006 2 2 -0.0217225118
## 1007 7 7 -0.0217166067
## 1008 1 1 -0.0216083208
## 1009 1 1 -0.0215800736
## 1010 2 2 -0.0213229860
## 1011 1 1 -0.0211693461
## 1012 1 1 -0.0211664186
## 1013 2 2 -0.0211255652
## 1014 1 1 -0.0208515538
## 1015 2 2 -0.0208390556
## 1016 1 1 -0.0207643105
## 1017 4 4 -0.0207209517
## 1018 2 2 -0.0206675745
## 1019 2 2 -0.0206075146
## 1020 1 1 -0.0205708303
## 1021 2 2 -0.0205136753
## 1022 1 1 -0.0203095314
## 1023 2 2 -0.0202094118
## 1024 1 1 -0.0199936277
## 1025 1 1 -0.0198303334
## 1026 2 2 -0.0196852780
## 1027 2 2 -0.0196403454
## 1028 1 1 -0.0195120387
## 1029 1 1 -0.0194483244
## 1030 2 2 -0.0193325298
## 1031 2 2 -0.0189208574
## 1032 1 1 -0.0188294898
## 1033 1 1 -0.0187999834
## 1034 1 1 -0.0187324250
## 1035 2 2 -0.0186057407
## 1036 1 1 -0.0184374304
## 1037 1 1 -0.0184306907
## 1038 1 1 -0.0184221951
## 1039 2 2 -0.0183447311
## 1040 2 2 -0.0183165499
## 1041 4 4 -0.0182747879
## 1042 7 7 -0.0182122172
## 1043 7 7 -0.0174531389
## 1044 1 1 -0.0174122806
## 1045 2 2 -0.0173297382
## 1046 1 1 -0.0170842171
## 1047 1 1 -0.0165421051
## 1048 2 2 -0.0165315385
## 1049 1 1 -0.0162729054
## 1050 1 1 -0.0161972341
## 1051 1 1 -0.0161262876
## 1052 4 4 -0.0159258837
## 1053 1 1 -0.0157076162
## 1054 1 1 -0.0156756237
## 1055 2 2 -0.0156656157
## 1056 6 6 -0.0151966352
## 1057 2 2 -0.0151573308
## 1058 1 1 -0.0151450116
## 1059 1 1 -0.0150678456
## 1060 2 2 -0.0150195180
## 1061 1 1 -0.0145016049
## 1062 1 1 -0.0143838296
## 1063 1 1 -0.0142867391
## 1064 1 1 -0.0139758358
## 1065 1 1 -0.0139665564
## 1066 2 2 -0.0138757566
## 1067 2 2 -0.0138756981
## 1068 1 1 -0.0137335567
## 1069 2 2 -0.0135277474
## 1070 1 1 -0.0135143711
## 1071 1 1 -0.0134227494
## 1072 2 2 -0.0132823601
## 1073 7 7 -0.0132743116
## 1074 1 1 -0.0132470274
## 1075 2 2 -0.0131009279
## 1076 1 1 -0.0129912339
## 1077 1 1 -0.0129302837
## 1078 1 1 -0.0129168476
## 1079 2 2 -0.0129145588
## 1080 2 2 -0.0125117834
## 1081 1 1 -0.0122239042
## 1082 7 7 -0.0122017146
## 1083 2 2 -0.0121570781
## 1084 2 2 -0.0121262988
## 1085 1 1 -0.0118228421
## 1086 1 1 -0.0117019819
## 1087 1 1 -0.0116709721
## 1088 2 2 -0.0116189565
## 1089 2 2 -0.0116138525
## 1090 6 6 -0.0113999248
## 1091 1 1 -0.0108265072
## 1092 1 1 -0.0107018290
## 1093 1 1 -0.0106646792
## 1094 7 7 -0.0106570157
## 1095 2 2 -0.0103539306
## 1096 1 1 -0.0100876912
## 1097 1 1 -0.0098560815
## 1098 1 1 -0.0098560659
## 1099 1 1 -0.0098525209
## 1100 2 2 -0.0098388358
## 1101 1 1 -0.0093963094
## 1102 2 2 -0.0093009241
## 1103 2 2 -0.0092027478
## 1104 2 2 -0.0091923677
## 1105 2 2 -0.0090650701
## 1106 1 1 -0.0089816313
## 1107 2 2 -0.0088261505
## 1108 7 7 -0.0086811794
## 1109 2 2 -0.0084755657
## 1110 1 1 -0.0082202138
## 1111 2 2 -0.0082199846
## 1112 1 1 -0.0080628543
## 1113 2 2 -0.0078970983
## 1114 7 7 -0.0078786005
## 1115 2 2 -0.0077272343
## 1116 1 1 -0.0077222503
## 1117 1 1 -0.0076489753
## 1118 1 1 -0.0075564153
## 1119 2 2 -0.0075194557
## 1120 1 1 -0.0074495997
## 1121 1 1 -0.0074490669
## 1122 2 2 -0.0073543956
## 1123 1 1 -0.0072482113
## 1124 1 1 -0.0072345006
## 1125 2 2 -0.0071471038
## 1126 1 1 -0.0066960206
## 1127 1 1 -0.0065778939
## 1128 2 2 -0.0065557061
## 1129 1 1 -0.0064782547
## 1130 1 1 -0.0063344118
## 1131 6 6 -0.0062863420
## 1132 1 1 -0.0062785660
## 1133 6 6 -0.0059909733
## 1134 2 2 -0.0059084730
## 1135 1 1 -0.0058577253
## 1136 1 1 -0.0057395972
## 1137 1 1 -0.0056513940
## 1138 1 1 -0.0056408631
## 1139 1 1 -0.0053103130
## 1140 2 2 -0.0052789912
## 1141 2 2 -0.0052367081
## 1142 7 7 -0.0049760480
## 1143 2 2 -0.0045930667
## 1144 1 1 -0.0043064103
## 1145 1 1 -0.0042456346
## 1146 1 1 -0.0041801536
## 1147 1 1 -0.0040236960
## 1148 1 1 -0.0039754037
## 1149 1 1 -0.0037562487
## 1150 2 2 -0.0037041183
## 1151 2 2 -0.0035544035
## 1152 1 1 -0.0033143970
## 1153 7 7 -0.0032457759
## 1154 2 2 -0.0029752164
## 1155 1 1 -0.0029068558
## 1156 6 6 -0.0028983955
## 1157 2 2 -0.0027986931
## 1158 1 1 -0.0027700981
## 1159 4 4 -0.0027586200
## 1160 2 2 -0.0024185787
## 1161 1 1 -0.0023330639
## 1162 1 1 -0.0022726989
## 1163 1 1 -0.0022357146
## 1164 1 1 -0.0021511920
## 1165 2 2 -0.0018848117
## 1166 1 1 -0.0018542767
## 1167 1 1 -0.0018340920
## 1168 2 2 -0.0017247923
## 1169 1 1 -0.0015928080
## 1170 1 1 -0.0014960271
## 1171 1 1 -0.0013629686
## 1172 1 1 -0.0009575059
## 1173 1 1 -0.0009178279
## 1174 1 1 -0.0008305044
## 1175 2 2 -0.0004238309
## 1176 1 1 -0.0002970147
## 1177 1 1 -0.0001746034
#===Interpretasi hasil clustering
#1. Menggunakan center
df |>
select(-CUST_ID) %>%
mutate(cluster=corrected_cluster$cluster) %>%
group_by(cluster) %>%
summarise(across(everything(),mean))
## # A tibble: 7 × 18
## cluster BALANCE BALANCE_FREQUENCY PURCHASES ONEOFF_PURCHASES
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 1819. 0.970 325. 260.
## 2 2 935. 0.962 1128. 345.
## 3 3 6041. 0.980 697. 420.
## 4 4 1001. 0.834 416. 254.
## 5 5 5470. 0.959 24597. 17745.
## 6 6 128. 0.420 393. 244.
## 7 7 2234. 0.989 4139. 2883.
## # ℹ 13 more variables: INSTALLMENTS_PURCHASES <dbl>, CASH_ADVANCE <dbl>,
## # PURCHASES_FREQUENCY <dbl>, ONEOFF_PURCHASES_FREQUENCY <dbl>,
## # PURCHASES_INSTALLMENTS_FREQUENCY <dbl>, CASH_ADVANCE_FREQUENCY <dbl>,
## # CASH_ADVANCE_TRX <dbl>, PURCHASES_TRX <dbl>, CREDIT_LIMIT <dbl>,
## # PAYMENTS <dbl>, MINIMUM_PAYMENTS <dbl>, PRC_FULL_PAYMENT <dbl>,
## # TENURE <dbl>
#2. Menggunakan visualisasi
data_umap_labeled <- data_umap %>%
mutate(cluster=as.factor(corrected_cluster$cluster))
ggscatter(data_umap_labeled, x = "x",
y = "y",
color = "cluster",
palette = "jco",
title = "Cluster Plot with 7-Means")
