# Load packages
# Core
library(tidyverse)
library(tidyquant)
Collect individual returns into a portfolio by assigning a weight to each stock
five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”
from 2019-12-31 to 2024-12-31
# Choose stocks
symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")
# Using tq_get() ----
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2019-12-31",
to = "2024-12-31")
asset_returns_tbl <- prices %>%
# Calculate monthly returns
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
# remane
set_names(c("asset", "date", "returns"))
# period_returns = c("yearly", "quarterly", "monthly", "weekly")
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
w <- c(0.25,
0.25,
0.20,
0.20,
0.10)
w_tbl <- tibble(symbols, w)
portfolio_returns_rebalanced_monthly_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
col_rename = "returns",
rebalance_on = "months")
portfolio_returns_rebalanced_monthly_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2020-01-31 -0.0296
## 2 2020-02-28 -0.0515
## 3 2020-03-31 -0.148
## 4 2020-04-30 0.0713
## 5 2020-05-29 0.0293
## 6 2020-06-30 0.0333
## 7 2020-07-31 0.0378
## 8 2020-08-31 0.0309
## 9 2020-09-30 -0.0214
## 10 2020-10-30 -0.000476
## # ℹ 50 more rows
# write_rds(portfolio_returns_rebalanced_monthly_tbl,
# "00_data/Ch03_portfolio_returns_rebalanced_monthly_tbl.rds")
portfolio_sd_tidyquant_builtin_percent <- portfolio_returns_rebalanced_monthly_tbl %>%
tq_performance(Ra = returns,
Rb = NULL,
performance_fun = table.Stats) %>%
select(Stdev) %>%
mutate(tq_sd = round(Stdev, 4) * 100)
portfolio_sd_tidyquant_builtin_percent
## # A tibble: 1 × 2
## Stdev tq_sd
## <dbl> <dbl>
## 1 0.0436 4.36
portfolio_returns_rebalanced_monthly_tbl %>%
ggplot(aes(x = date, y = returns)) +
geom_point(color = "cornflower blue") +
# Formatting
scale_x_date(breaks = scales::breaks_pretty(n = 6)) +
labs(title = "Portfolio Returns Scatter",
y = "monthly return")
portfolio_returns_rebalanced_monthly_tbl %>%
ggplot(aes(returns)) +
geom_histogram(fill = "cornflower blue",
binwidth = 0.005) +
labs(title = "Portfolio Returns Distribution",
y = "count",
x = "returns")
portfolio_returns_rebalanced_monthly_tbl %>%
ggplot(aes(returns)) +
geom_histogram(fill = "cornflower blue",
binwidth = 0.01) +
geom_density(aes(returns)) +
labs(title = "Portfolio Histogram and Density",
y = "distribution",
x = "monthly returns")