# Load packages

# Core
library(tidyverse)
library(tidyquant)

Goal

Collect individual returns into a portfolio by assigning a weight to each stock

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”

from 2019-12-31 to 2024-12-31

1 Import stock prices

# Choose stocks

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

# Using tq_get() ----
prices <- tq_get(x = symbols,
                 get = "stock.prices",
                 from = "2019-12-31",
                 to = "2024-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%

    # Calculate monthly returns
    group_by(symbol) %>%
    tq_transmute(select = adjusted,
                 mutate_fun = periodReturn,
                 period = "monthly",
                 type = "log") %>%
    slice(-1) %>%
    ungroup() %>%

    # remane
    set_names(c("asset", "date", "returns"))

# period_returns = c("yearly", "quarterly", "monthly", "weekly")

3 Assign a weight to each asset

symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()

w <- c(0.25,
       0.25,
       0.20,
       0.20,
       0.10)

w_tbl <- tibble(symbols, w)

4 Build a portfolio

portfolio_returns_rebalanced_monthly_tbl <- asset_returns_tbl %>%
    
    tq_portfolio(assets_col   = asset,
                 returns_col  = returns,
                 weights      = w_tbl,
                 col_rename   = "returns",
                 rebalance_on = "months")

portfolio_returns_rebalanced_monthly_tbl
## # A tibble: 60 × 2
##    date         returns
##    <date>         <dbl>
##  1 2020-01-31 -0.0296  
##  2 2020-02-28 -0.0515  
##  3 2020-03-31 -0.148   
##  4 2020-04-30  0.0713  
##  5 2020-05-29  0.0293  
##  6 2020-06-30  0.0333  
##  7 2020-07-31  0.0378  
##  8 2020-08-31  0.0309  
##  9 2020-09-30 -0.0214  
## 10 2020-10-30 -0.000476
## # ℹ 50 more rows
# write_rds(portfolio_returns_rebalanced_monthly_tbl,
#           "00_data/Ch03_portfolio_returns_rebalanced_monthly_tbl.rds")

5 Compute Standard Deviation

portfolio_sd_tidyquant_builtin_percent <- portfolio_returns_rebalanced_monthly_tbl %>%
    
    tq_performance(Ra = returns,
                   Rb = NULL, 
                   performance_fun = table.Stats) %>%
    
    select(Stdev) %>%
    mutate(tq_sd = round(Stdev, 4) * 100)

portfolio_sd_tidyquant_builtin_percent
## # A tibble: 1 × 2
##    Stdev tq_sd
##    <dbl> <dbl>
## 1 0.0436  4.36

6 Plot

portfolio_returns_rebalanced_monthly_tbl %>%
    
    ggplot(aes(x = date, y = returns)) +
    geom_point(color = "cornflower blue") +
    
    # Formatting
    scale_x_date(breaks = scales::breaks_pretty(n = 6)) +
    
    labs(title = "Portfolio Returns Scatter",
         y = "monthly return")

portfolio_returns_rebalanced_monthly_tbl %>%
    
    ggplot(aes(returns)) +
    geom_histogram(fill = "cornflower blue",
                   binwidth = 0.005) +
    
    labs(title = "Portfolio Returns Distribution",
         y = "count",
         x = "returns")

portfolio_returns_rebalanced_monthly_tbl %>%
    
    ggplot(aes(returns)) +
    geom_histogram(fill = "cornflower blue",
                   binwidth = 0.01) +
    geom_density(aes(returns)) +
    
    labs(title = "Portfolio Histogram and Density",
         y = "distribution",
         x = "monthly returns")