# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize expected returns and risk to make it easier to compare the performance of multiple assets and portfolios.
Choose your stocks.
from 2019-12-31 to 2024-12-31
symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")
# Using tq_get() ----
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2019-12-31",
to = "2024-12-31")
asset_returns_tbl <- prices %>%
# Calculate monthly returns
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
# remane
set_names(c("asset", "date", "returns"))
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
w <- c(0.25,
0.25,
0.20,
0.20,
0.10)
w_tbl <- tibble(symbols, w)
portfolio_returns_rebalanced_monthly_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
col_rename = "returns",
rebalance_on = "months")
portfolio_returns_rebalanced_monthly_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2020-01-31 -0.0296
## 2 2020-02-28 -0.0515
## 3 2020-03-31 -0.148
## 4 2020-04-30 0.0713
## 5 2020-05-29 0.0293
## 6 2020-06-30 0.0333
## 7 2020-07-31 0.0378
## 8 2020-08-31 0.0309
## 9 2020-09-30 -0.0214
## 10 2020-10-30 -0.000476
## # ℹ 50 more rows
portfolio_sd_tidyquant_builtin_percent <- portfolio_returns_rebalanced_monthly_tbl %>%
tq_performance(Ra = returns,
Rb = NULL,
performance_fun = table.Stats) %>%
select(Stdev) %>%
mutate(tq_sd = round(Stdev, 4) * 100)
portfolio_sd_tidyquant_builtin_percent
## # A tibble: 1 × 2
## Stdev tq_sd
## <dbl> <dbl>
## 1 0.0436 4.36
portfolio_returns_rebalanced_monthly_tbl %>%
ggplot(aes(x = date, y = returns)) +
geom_point(color = "cornflower blue") +
# Formatting
scale_x_date(breaks = scales::breaks_pretty(n = 6)) +
labs(title = "Portfolio Returns Scatter",
y = "monthly return")
portfolio_returns_rebalanced_monthly_tbl %>%
ggplot(aes(returns)) +
geom_histogram(fill = "cornflower blue",
binwidth = 0.005) +
labs(title = "Portfolio Returns Distribution",
y = "count",
x = "returns")
portfolio_returns_rebalanced_monthly_tbl %>%
ggplot(aes(returns)) +
geom_histogram(fill = "cornflower blue",
binwidth = 0.01) +
geom_density(aes(returns)) +
labs(title = "Portfolio Histogram and Density",
y = "distribution",
x = "monthly returns")
How should you expect your portfolio to perform relative to its assets in the portfolio? Would you invest all your money in any of the individual stocks instead of the portfolio? Discuss both in terms of expected return and risk.