library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.2 ✔ tibble 3.3.0
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.1.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(pastecs)
##
## Attaching package: 'pastecs'
##
## The following objects are masked from 'package:dplyr':
##
## first, last
##
## The following object is masked from 'package:tidyr':
##
## extract
library(readxl)
#question2: the variable i have selected to measure is number of students enrolled in the texas counties. These variables provide data on the highest and lowest student population in each county.
district_data<-read_excel("district.xls")
stat.desc(district_data$DPETALLC,norm=T)
## nbr.val nbr.null nbr.na min max range
## 1.207000e+03 0.000000e+00 0.000000e+00 4.000000e+00 1.937270e+05 1.937230e+05
## sum median mean SE.mean CI.mean.0.95 var
## 5.402928e+06 8.840000e+02 4.476328e+03 3.594000e+02 7.051187e+02 1.559062e+08
## std.dev coef.var skewness skew.2SE kurtosis kurt.2SE
## 1.248624e+04 2.789393e+00 6.976469e+00 4.953617e+01 7.077808e+01 2.514855e+02
## normtest.W normtest.p
## 3.504454e-01 4.578361e-54
summary(district_data$DPETALLC)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 4.0 337.5 884.0 4476.3 2746.0 193727.0
hist(district_data$DPETALLC)
district_data_transformed<-district_data |> mutate (DPETALLC_log=log(DPETALLC))
hist(district_data_transformed$DPETALLC_log)