Goal: understand order effects.

DVs:

for each comparison, I do

IVs:

Prep

## here() starts at /home/vboyce/Research/peekbank-method
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.2
## ✔ ggplot2   4.0.0     ✔ tibble    3.3.0
## ✔ lubridate 1.9.4     ✔ tidyr     1.3.1
## ✔ purrr     1.1.0     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
## Loading required package: viridisLite
## 
## Loading required package: Matrix
## 
## 
## Attaching package: 'Matrix'
## 
## 
## The following objects are masked from 'package:tidyr':
## 
##     expand, pack, unpack

Trial order

both want to look for order effects on say 1-10 and binned for longer!

group trials by 5s (labelled by the early trial of the block) not seeing much that’s consistent trends that would be worrisome

## Linear mixed model fit by REML ['lmerMod']
## Formula: correct_early ~ trial_order + (1 | administration_id) + (1 |  
##     target_label) + (1 | dataset_name)
##    Data: trial_order_mod
## 
## REML criterion at convergence: 28358.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.5414 -0.9986 -0.1133  1.0506  1.5886 
## 
## Random effects:
##  Groups            Name        Variance Std.Dev.
##  administration_id (Intercept) 0.000000 0.00000 
##  target_label      (Intercept) 0.010519 0.10256 
##  dataset_name      (Intercept) 0.001612 0.04015 
##  Residual                      0.214378 0.46301 
## Number of obs: 21713, groups:  
## administration_id, 3103; target_label, 140; dataset_name, 21
## 
## Fixed effects:
##              Estimate Std. Error t value
## (Intercept) 0.5115196  0.0165440  30.919
## trial_order 0.0006717  0.0003977   1.689
## 
## Correlation of Fixed Effects:
##             (Intr)
## trial_order -0.212
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
## Linear mixed model fit by REML ['lmerMod']
## Formula: 
## correct_late ~ trial_order + (1 | administration_id) + (1 | target_label) +  
##     (1 | dataset_name)
##    Data: trial_order_mod
## 
## REML criterion at convergence: 33406.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.6087 -0.9750 -0.5558  1.0214  1.6045 
## 
## Random effects:
##  Groups            Name        Variance Std.Dev.
##  administration_id (Intercept) 0.000000 0.00000 
##  target_label      (Intercept) 0.010240 0.10120 
##  dataset_name      (Intercept) 0.005313 0.07289 
##  Residual                      0.236572 0.48639 
## Number of obs: 23774, groups:  
## administration_id, 3471; target_label, 146; dataset_name, 24
## 
## Fixed effects:
##              Estimate Std. Error t value
## (Intercept) 0.4916199  0.0203474   24.16
## trial_order 0.0007688  0.0004134    1.86
## 
## Correlation of Fixed Effects:
##             (Intr)
## trial_order -0.163
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
## Linear mixed model fit by REML ['lmerMod']
## Formula: 
## accuracy ~ trial_order + (1 | administration_id) + (1 | target_label) +  
##     (1 | dataset_name)
##    Data: trial_order_mod
## 
## REML criterion at convergence: 9195
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2204 -0.6274  0.1586  0.7592  2.4132 
## 
## Random effects:
##  Groups            Name        Variance Std.Dev.
##  administration_id (Intercept) 0.007539 0.08683 
##  target_label      (Intercept) 0.004948 0.07034 
##  dataset_name      (Intercept) 0.006002 0.07747 
##  Residual                      0.074600 0.27313 
## Number of obs: 28713, groups:  
## administration_id, 3569; target_label, 147; dataset_name, 24
## 
## Fixed effects:
##              Estimate Std. Error t value
## (Intercept) 0.6698855  0.0182261  36.754
## trial_order 0.0003107  0.0002215   1.403
## 
## Correlation of Fixed Effects:
##             (Intr)
## trial_order -0.103
## Linear mixed model fit by REML ['lmerMod']
## Formula: has_rt ~ trial_order + (1 | administration_id) + (1 | target_label) +  
##     (1 | dataset_name)
##    Data: trial_order_mod
## 
## REML criterion at convergence: 37184.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.3346 -0.7313 -0.5962  1.3246  2.0909 
## 
## Random effects:
##  Groups            Name        Variance Std.Dev.
##  administration_id (Intercept) 0.003332 0.05773 
##  target_label      (Intercept) 0.005551 0.07450 
##  dataset_name      (Intercept) 0.006082 0.07798 
##  Residual                      0.208505 0.45662 
## Number of obs: 28789, groups:  
## administration_id, 3569; target_label, 147; dataset_name, 24
## 
## Fixed effects:
##               Estimate Std. Error t value
## (Intercept)  0.2857839  0.0193559  14.765
## trial_order -0.0011606  0.0003592  -3.231
## 
## Correlation of Fixed Effects:
##             (Intr)
## trial_order -0.150
## Linear mixed model fit by REML ['lmerMod']
## Formula: rt ~ trial_order + (1 | administration_id) + (1 | target_label) +  
##     (1 | dataset_name)
##    Data: trial_order_mod
## 
## REML criterion at convergence: 143207
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2285 -0.5472 -0.2610  0.2511  4.8468 
## 
## Random effects:
##  Groups            Name        Variance Std.Dev.
##  administration_id (Intercept)  68799   262.3   
##  target_label      (Intercept)  12694   112.7   
##  dataset_name      (Intercept)  20041   141.6   
##  Residual                      300519   548.2   
## Number of obs: 9168, groups:  
## administration_id, 2836; target_label, 133; dataset_name, 24
## 
## Fixed effects:
##              Estimate Std. Error t value
## (Intercept) 1094.1485    36.6758   29.83
## trial_order    0.4143     0.7821    0.53
## 
## Correlation of Fixed Effects:
##             (Intr)
## trial_order -0.171

no large effects of trial order

Seen prev as distractor

## Linear mixed model fit by REML ['lmerMod']
## Formula: correct_early ~ type + (1 | administration_id) + (1 | target_label) +  
##     (1 | dataset_name)
##    Data: prev_dist_mod
## 
## REML criterion at convergence: 39740.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.5860 -1.0157 -0.1019  1.0453  1.7481 
## 
## Random effects:
##  Groups            Name        Variance Std.Dev.
##  administration_id (Intercept) 0.000000 0.00000 
##  target_label      (Intercept) 0.012418 0.11144 
##  dataset_name      (Intercept) 0.001301 0.03606 
##  Residual                      0.212942 0.46146 
## Number of obs: 30612, groups:  
## administration_id, 3146; target_label, 146; dataset_name, 21
## 
## Fixed effects:
##                        Estimate Std. Error t value
## (Intercept)            0.495710   0.015467  32.050
## typeprev_as_distractor 0.011804   0.006269   1.883
## 
## Correlation of Fixed Effects:
##             (Intr)
## typprv_s_ds -0.123
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
## Linear mixed model fit by REML ['lmerMod']
## Formula: correct_late ~ type + (1 | administration_id) + (1 | target_label) +  
##     (1 | dataset_name)
##    Data: prev_dist_mod
## 
## REML criterion at convergence: 46883.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.6060 -0.9706 -0.5571  1.0109  1.6160 
## 
## Random effects:
##  Groups            Name        Variance Std.Dev.
##  administration_id (Intercept) 0.000000 0.0000  
##  target_label      (Intercept) 0.011912 0.1091  
##  dataset_name      (Intercept) 0.004071 0.0638  
##  Residual                      0.236735 0.4866  
## Number of obs: 33384, groups:  
## administration_id, 3518; target_label, 151; dataset_name, 24
## 
## Fixed effects:
##                        Estimate Std. Error t value
## (Intercept)            0.480192   0.018516   25.93
## typeprev_as_distractor 0.010152   0.006426    1.58
## 
## Correlation of Fixed Effects:
##             (Intr)
## typprv_s_ds -0.103
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
## Linear mixed model fit by REML ['lmerMod']
## Formula: accuracy ~ type + (1 | administration_id) + (1 | target_label) +  
##     (1 | dataset_name)
##    Data: prev_dist_mod
## 
## REML criterion at convergence: 13683.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2153 -0.6234  0.1647  0.7537  2.4636 
## 
## Random effects:
##  Groups            Name        Variance Std.Dev.
##  administration_id (Intercept) 0.008531 0.09237 
##  target_label      (Intercept) 0.004745 0.06888 
##  dataset_name      (Intercept) 0.006566 0.08103 
##  Residual                      0.076128 0.27591 
## Number of obs: 40523, groups:  
## administration_id, 3576; target_label, 151; dataset_name, 24
## 
## Fixed effects:
##                        Estimate Std. Error t value
## (Intercept)            0.663463   0.018502  35.859
## typeprev_as_distractor 0.009176   0.003388   2.709
## 
## Correlation of Fixed Effects:
##             (Intr)
## typprv_s_ds -0.055
## Linear mixed model fit by REML ['lmerMod']
## Formula: has_rt ~ type + (1 | administration_id) + (1 | target_label) +  
##     (1 | dataset_name)
##    Data: prev_dist_mod
## 
## REML criterion at convergence: 52328.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.3876 -0.7206 -0.5860  1.3319  2.0838 
## 
## Random effects:
##  Groups            Name        Variance Std.Dev.
##  administration_id (Intercept) 0.003196 0.05654 
##  target_label      (Intercept) 0.006670 0.08167 
##  dataset_name      (Intercept) 0.005918 0.07693 
##  Residual                      0.208031 0.45610 
## Number of obs: 40644, groups:  
## administration_id, 3576; target_label, 151; dataset_name, 24
## 
## Fixed effects:
##                         Estimate Std. Error t value
## (Intercept)             0.291475   0.018856  15.458
## typeprev_as_distractor -0.011998   0.005491  -2.185
## 
## Correlation of Fixed Effects:
##             (Intr)
## typprv_s_ds -0.087
## Linear mixed model fit by REML ['lmerMod']
## Formula: rt ~ type + (1 | administration_id) + (1 | target_label) + (1 |  
##     dataset_name)
##    Data: prev_dist_mod
## 
## REML criterion at convergence: 199958.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.4188 -0.5403 -0.2565  0.2312  5.0710 
## 
## Random effects:
##  Groups            Name        Variance Std.Dev.
##  administration_id (Intercept)  67561   259.93  
##  target_label      (Intercept)   9650    98.24  
##  dataset_name      (Intercept)  21825   147.73  
##  Residual                      304245   551.58  
## Number of obs: 12803, groups:  
## administration_id, 3140; target_label, 140; dataset_name, 24
## 
## Fixed effects:
##                        Estimate Std. Error t value
## (Intercept)             1101.42      35.75   30.81
## typeprev_as_distractor   -16.57      12.46   -1.33
## 
## Correlation of Fixed Effects:
##             (Intr)
## typprv_s_ds -0.111

estimates of around 1% differences in accuracy (preferring prev distractor), sometimes “significant”

## Linear mixed model fit by REML ['lmerMod']
## Formula: correct_early ~ type * trial_order + (1 | administration_id) +  
##     (1 | target_label) + (1 | dataset_name)
##    Data: prev_dist_mod
## 
## REML criterion at convergence: 39762.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.5921 -1.0203 -0.1042  1.0467  1.7267 
## 
## Random effects:
##  Groups            Name        Variance Std.Dev.
##  administration_id (Intercept) 0.000000 0.00000 
##  target_label      (Intercept) 0.012290 0.11086 
##  dataset_name      (Intercept) 0.001322 0.03636 
##  Residual                      0.212928 0.46144 
## Number of obs: 30612, groups:  
## administration_id, 3146; target_label, 146; dataset_name, 21
## 
## Fixed effects:
##                                      Estimate Std. Error t value
## (Intercept)                         0.4925459  0.0158878  31.002
## typeprev_as_distractor             -0.0056657  0.0136853  -0.414
## trial_order                         0.0004921  0.0003882   1.268
## typeprev_as_distractor:trial_order  0.0007840  0.0007606   1.031
## 
## Correlation of Fixed Effects:
##             (Intr) typp__ trl_rd
## typprv_s_ds -0.139              
## trial_order -0.224  0.187       
## typprv_s_:_  0.140 -0.865 -0.428
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
## Linear mixed model fit by REML ['lmerMod']
## Formula: correct_late ~ type * trial_order + (1 | administration_id) +  
##     (1 | target_label) + (1 | dataset_name)
##    Data: prev_dist_mod
## 
## REML criterion at convergence: 46900.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.6039 -0.9712 -0.5464  1.0158  1.6161 
## 
## Random effects:
##  Groups            Name        Variance Std.Dev.
##  administration_id (Intercept) 0.00000  0.00000 
##  target_label      (Intercept) 0.01179  0.10860 
##  dataset_name      (Intercept) 0.00392  0.06261 
##  Residual                      0.23670  0.48651 
## Number of obs: 33384, groups:  
## administration_id, 3518; target_label, 151; dataset_name, 24
## 
## Fixed effects:
##                                      Estimate Std. Error t value
## (Intercept)                         0.4787467  0.0186633  25.652
## typeprev_as_distractor             -0.0193517  0.0137227  -1.410
## trial_order                         0.0004863  0.0004045   1.202
## typeprev_as_distractor:trial_order  0.0015056  0.0007731   1.947
## 
## Correlation of Fixed Effects:
##             (Intr) typp__ trl_rd
## typprv_s_ds -0.128              
## trial_order -0.187  0.186       
## typprv_s_:_  0.129 -0.859 -0.435
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
## Linear mixed model fit by REML ['lmerMod']
## Formula: accuracy ~ type * trial_order + (1 | administration_id) + (1 |  
##     target_label) + (1 | dataset_name)
##    Data: prev_dist_mod
## 
## REML criterion at convergence: 13704.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2185 -0.6238  0.1645  0.7536  2.4546 
## 
## Random effects:
##  Groups            Name        Variance Std.Dev.
##  administration_id (Intercept) 0.008465 0.09201 
##  target_label      (Intercept) 0.004750 0.06892 
##  dataset_name      (Intercept) 0.006383 0.07989 
##  Residual                      0.076147 0.27595 
## Number of obs: 40523, groups:  
## administration_id, 3576; target_label, 151; dataset_name, 24
## 
## Fixed effects:
##                                      Estimate Std. Error t value
## (Intercept)                         6.641e-01  1.841e-02  36.078
## typeprev_as_distractor             -7.011e-03  7.244e-03  -0.968
## trial_order                         9.319e-05  2.191e-04   0.425
## typeprev_as_distractor:trial_order  9.192e-04  4.115e-04   2.234
## 
## Correlation of Fixed Effects:
##             (Intr) typp__ trl_rd
## typprv_s_ds -0.070              
## trial_order -0.107  0.171       
## typprv_s_:_  0.073 -0.858 -0.422
## Linear mixed model fit by REML ['lmerMod']
## Formula: has_rt ~ type * trial_order + (1 | administration_id) + (1 |  
##     target_label) + (1 | dataset_name)
##    Data: prev_dist_mod
## 
## REML criterion at convergence: 52345.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.3814 -0.7184 -0.5858  1.3321  2.0806 
## 
## Random effects:
##  Groups            Name        Variance Std.Dev.
##  administration_id (Intercept) 0.003186 0.05644 
##  target_label      (Intercept) 0.006601 0.08125 
##  dataset_name      (Intercept) 0.005899 0.07680 
##  Residual                      0.208004 0.45607 
## Number of obs: 40644, groups:  
## administration_id, 3576; target_label, 151; dataset_name, 24
## 
## Fixed effects:
##                                      Estimate Std. Error t value
## (Intercept)                         0.2981510  0.0190827  15.624
## typeprev_as_distractor             -0.0009064  0.0117531  -0.077
## trial_order                        -0.0009351  0.0003518  -2.658
## typeprev_as_distractor:trial_order -0.0002219  0.0006657  -0.333
## 
## Correlation of Fixed Effects:
##             (Intr) typp__ trl_rd
## typprv_s_ds -0.109              
## trial_order -0.160  0.181       
## typprv_s_:_  0.111 -0.859 -0.432
## Linear mixed model fit by REML ['lmerMod']
## Formula: 
## rt ~ type * trial_order + (1 | administration_id) + (1 | target_label) +  
##     (1 | dataset_name)
##    Data: prev_dist_mod
## 
## REML criterion at convergence: 199949.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.4251 -0.5400 -0.2573  0.2326  5.0568 
## 
## Random effects:
##  Groups            Name        Variance Std.Dev.
##  administration_id (Intercept)  67328   259.5   
##  target_label      (Intercept)   9940    99.7   
##  dataset_name      (Intercept)  21652   147.1   
##  Residual                      304262   551.6   
## Number of obs: 12803, groups:  
## administration_id, 3140; target_label, 140; dataset_name, 24
## 
## Fixed effects:
##                                     Estimate Std. Error t value
## (Intercept)                        1093.1326    36.3956  30.035
## typeprev_as_distractor               36.9086    27.3291   1.351
## trial_order                           0.3651     0.7678   0.475
## typeprev_as_distractor:trial_order   -3.2753     1.5213  -2.153
## 
## Correlation of Fixed Effects:
##             (Intr) typp__ trl_rd
## typprv_s_ds -0.140              
## trial_order -0.182  0.166       
## typprv_s_:_  0.138 -0.865 -0.411

but it diminishes and sometimes flips sign if we take trial order into account as well. Possible faster RT to previous distractors over time.

Seen prev as target

## Linear mixed model fit by REML ['lmerMod']
## Formula: correct_early ~ type + (1 | administration_id) + (1 | target_label) +  
##     (1 | dataset_name)
##    Data: prev_target_mod
## 
## REML criterion at convergence: 31271.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.5433 -0.9966 -0.1147  1.0520  1.5444 
## 
## Random effects:
##  Groups            Name        Variance  Std.Dev. 
##  administration_id (Intercept) 4.982e-11 7.058e-06
##  target_label      (Intercept) 9.823e-03 9.911e-02
##  dataset_name      (Intercept) 1.315e-03 3.626e-02
##  Residual                      2.150e-01 4.637e-01
## Number of obs: 23908, groups:  
## administration_id, 3103; target_label, 141; dataset_name, 21
## 
## Fixed effects:
##                    Estimate Std. Error t value
## (Intercept)         0.52002    0.01529  34.015
## typeprev_as_target  0.01028    0.01100   0.935
## 
## Correlation of Fixed Effects:
##             (Intr)
## typprv_s_tr -0.060
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
## Linear mixed model fit by REML ['lmerMod']
## Formula: correct_late ~ type + (1 | administration_id) + (1 | target_label) +  
##     (1 | dataset_name)
##    Data: prev_target_mod
## 
## REML criterion at convergence: 37126.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.5993 -0.9607 -0.5664  1.0217  1.5955 
## 
## Random effects:
##  Groups            Name        Variance Std.Dev.
##  administration_id (Intercept) 0.000000 0.00000 
##  target_label      (Intercept) 0.010456 0.10225 
##  dataset_name      (Intercept) 0.005189 0.07203 
##  Residual                      0.237095 0.48692 
## Number of obs: 26394, groups:  
## administration_id, 3480; target_label, 147; dataset_name, 24
## 
## Fixed effects:
##                    Estimate Std. Error t value
## (Intercept)         0.50316    0.01989  25.301
## typeprev_as_target  0.01082    0.01066   1.015
## 
## Correlation of Fixed Effects:
##             (Intr)
## typprv_s_tr -0.037
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
## Linear mixed model fit by REML ['lmerMod']
## Formula: accuracy ~ type + (1 | administration_id) + (1 | target_label) +  
##     (1 | dataset_name)
##    Data: prev_target_mod
## 
## REML criterion at convergence: 10791.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1136 -0.6290  0.1592  0.7662  2.4394 
## 
## Random effects:
##  Groups            Name        Variance Std.Dev.
##  administration_id (Intercept) 0.007454 0.08634 
##  target_label      (Intercept) 0.004849 0.06964 
##  dataset_name      (Intercept) 0.005380 0.07335 
##  Residual                      0.076472 0.27654 
## Number of obs: 31777, groups:  
## administration_id, 3572; target_label, 147; dataset_name, 24
## 
## Fixed effects:
##                    Estimate Std. Error t value
## (Intercept)         0.67282    0.01733  38.824
## typeprev_as_target -0.02778    0.00570  -4.873
## 
## Correlation of Fixed Effects:
##             (Intr)
## typprv_s_tr -0.024
## Linear mixed model fit by REML ['lmerMod']
## Formula: has_rt ~ type + (1 | administration_id) + (1 | target_label) +  
##     (1 | dataset_name)
##    Data: prev_target_mod
## 
## REML criterion at convergence: 41278
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.2347 -0.7363 -0.6001  1.3292  2.0940 
## 
## Random effects:
##  Groups            Name        Variance Std.Dev.
##  administration_id (Intercept) 0.003461 0.05883 
##  target_label      (Intercept) 0.005187 0.07202 
##  dataset_name      (Intercept) 0.005659 0.07522 
##  Residual                      0.209422 0.45763 
## Number of obs: 31863, groups:  
## administration_id, 3572; target_label, 147; dataset_name, 24
## 
## Fixed effects:
##                     Estimate Std. Error t value
## (Intercept)         0.269222   0.018477  14.571
## typeprev_as_target -0.012363   0.009318  -1.327
## 
## Correlation of Fixed Effects:
##             (Intr)
## typprv_s_tr -0.036
## Linear mixed model fit by REML ['lmerMod']
## Formula: rt ~ type + (1 | administration_id) + (1 | target_label) + (1 |  
##     dataset_name)
##    Data: prev_target_mod
## 
## REML criterion at convergence: 159119.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2220 -0.5479 -0.2549  0.2442  4.8650 
## 
## Random effects:
##  Groups            Name        Variance Std.Dev.
##  administration_id (Intercept)  66198   257.3   
##  target_label      (Intercept)  13774   117.4   
##  dataset_name      (Intercept)  19992   141.4   
##  Residual                      299980   547.7   
## Number of obs: 10195, groups:  
## administration_id, 2850; target_label, 136; dataset_name, 24
## 
## Fixed effects:
##                    Estimate Std. Error t value
## (Intercept)        1096.706     36.148   30.34
## typeprev_as_target    7.473     19.679    0.38
## 
## Correlation of Fixed Effects:
##             (Intr)
## typprv_s_tr -0.032

-2% difference in accuracy when repeating as the target

## Linear mixed model fit by REML ['lmerMod']
## Formula: correct_early ~ type * trial_order + (1 | administration_id) +  
##     (1 | target_label) + (1 | dataset_name)
##    Data: prev_target_mod
## 
## REML criterion at convergence: 31294.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.5469 -1.0026 -0.1098  1.0584  1.5488 
## 
## Random effects:
##  Groups            Name        Variance Std.Dev.
##  administration_id (Intercept) 0.000000 0.00000 
##  target_label      (Intercept) 0.009786 0.09892 
##  dataset_name      (Intercept) 0.001385 0.03721 
##  Residual                      0.214991 0.46367 
## Number of obs: 23908, groups:  
## administration_id, 3103; target_label, 141; dataset_name, 21
## 
## Fixed effects:
##                                  Estimate Std. Error t value
## (Intercept)                     0.5139209  0.0158203  32.485
## typeprev_as_target              0.0169112  0.0315571   0.536
## trial_order                     0.0006782  0.0003948   1.718
## typeprev_as_target:trial_order -0.0006215  0.0013023  -0.477
## 
## Correlation of Fixed Effects:
##             (Intr) typp__ trl_rd
## typprv_s_tr -0.057              
## trial_order -0.228  0.109       
## typprv_s_:_  0.073 -0.926 -0.265
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
## Linear mixed model fit by REML ['lmerMod']
## Formula: correct_late ~ type * trial_order + (1 | administration_id) +  
##     (1 | target_label) + (1 | dataset_name)
##    Data: prev_target_mod
## 
## REML criterion at convergence: 37148.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.5987 -0.9651 -0.5684  1.0231  1.6012 
## 
## Random effects:
##  Groups            Name        Variance Std.Dev.
##  administration_id (Intercept) 0.000000 0.0000  
##  target_label      (Intercept) 0.010398 0.1020  
##  dataset_name      (Intercept) 0.005198 0.0721  
##  Residual                      0.237079 0.4869  
## Number of obs: 26394, groups:  
## administration_id, 3480; target_label, 147; dataset_name, 24
## 
## Fixed effects:
##                                  Estimate Std. Error t value
## (Intercept)                     0.4962076  0.0201796  24.590
## typeprev_as_target              0.0230007  0.0273367   0.841
## trial_order                     0.0008206  0.0004108   1.998
## typeprev_as_target:trial_order -0.0009705  0.0011875  -0.817
## 
## Correlation of Fixed Effects:
##             (Intr) typp__ trl_rd
## typprv_s_tr -0.050              
## trial_order -0.170  0.103       
## typprv_s_:_  0.068 -0.907 -0.283
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
## Linear mixed model fit by REML ['lmerMod']
## Formula: accuracy ~ type * trial_order + (1 | administration_id) + (1 |  
##     target_label) + (1 | dataset_name)
##    Data: prev_target_mod
## 
## REML criterion at convergence: 10815.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1258 -0.6296  0.1593  0.7656  2.4373 
## 
## Random effects:
##  Groups            Name        Variance Std.Dev.
##  administration_id (Intercept) 0.007424 0.08616 
##  target_label      (Intercept) 0.004866 0.06976 
##  dataset_name      (Intercept) 0.005339 0.07307 
##  Residual                      0.076481 0.27655 
## Number of obs: 31777, groups:  
## administration_id, 3572; target_label, 147; dataset_name, 24
## 
## Fixed effects:
##                                  Estimate Std. Error t value
## (Intercept)                     0.6707926  0.0173951  38.562
## typeprev_as_target             -0.0014464  0.0145883  -0.099
## trial_order                     0.0001887  0.0002220   0.850
## typeprev_as_target:trial_order -0.0013054  0.0006393  -2.042
## 
## Correlation of Fixed Effects:
##             (Intr) typp__ trl_rd
## typprv_s_tr -0.032              
## trial_order -0.111  0.102       
## typprv_s_:_  0.043 -0.907 -0.281
## Linear mixed model fit by REML ['lmerMod']
## Formula: has_rt ~ type * trial_order + (1 | administration_id) + (1 |  
##     target_label) + (1 | dataset_name)
##    Data: prev_target_mod
## 
## REML criterion at convergence: 41292.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.2331 -0.7367 -0.5992  1.3271  2.0917 
## 
## Random effects:
##  Groups            Name        Variance Std.Dev.
##  administration_id (Intercept) 0.003450 0.05874 
##  target_label      (Intercept) 0.005100 0.07142 
##  dataset_name      (Intercept) 0.005887 0.07673 
##  Residual                      0.209367 0.45757 
## Number of obs: 31863, groups:  
## administration_id, 3572; target_label, 147; dataset_name, 24
## 
## Fixed effects:
##                                  Estimate Std. Error t value
## (Intercept)                     0.2793934  0.0189482  14.745
## typeprev_as_target             -0.0197289  0.0237756  -0.830
## trial_order                    -0.0012290  0.0003571  -3.442
## typeprev_as_target:trial_order  0.0009560  0.0010388   0.920
## 
## Correlation of Fixed Effects:
##             (Intr) typp__ trl_rd
## typprv_s_tr -0.045              
## trial_order -0.158  0.102       
## typprv_s_:_  0.061 -0.906 -0.281
## Linear mixed model fit by REML ['lmerMod']
## Formula: 
## rt ~ type * trial_order + (1 | administration_id) + (1 | target_label) +  
##     (1 | dataset_name)
##    Data: prev_target_mod
## 
## REML criterion at convergence: 159109.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2217 -0.5471 -0.2571  0.2500  4.8582 
## 
## Random effects:
##  Groups            Name        Variance Std.Dev.
##  administration_id (Intercept)  66396   257.7   
##  target_label      (Intercept)  14055   118.6   
##  dataset_name      (Intercept)  20871   144.5   
##  Residual                      299691   547.4   
## Number of obs: 10195, groups:  
## administration_id, 2850; target_label, 136; dataset_name, 24
## 
## Fixed effects:
##                                 Estimate Std. Error t value
## (Intercept)                    1092.6406    37.2792  29.310
## typeprev_as_target              -97.0160    51.7692  -1.874
## trial_order                       0.6107     0.7739   0.789
## typeprev_as_target:trial_order    4.4826     2.2681   1.976
## 
## Correlation of Fixed Effects:
##             (Intr) typp__ trl_rd
## typprv_s_tr -0.040              
## trial_order -0.171  0.106       
## typprv_s_:_  0.058 -0.912 -0.280

no substantial differences

compare all three

## Linear mixed model fit by REML ['lmerMod']
## Formula: correct_early ~ type + (1 | administration_id) + (1 | target_label) +  
##     (1 | dataset_name)
##    Data: prev_any_mod
## 
## REML criterion at convergence: 42669.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.5622 -1.0159 -0.0995  1.0523  1.7398 
## 
## Random effects:
##  Groups            Name        Variance Std.Dev.
##  administration_id (Intercept) 0.00000  0.00000 
##  target_label      (Intercept) 0.01167  0.10801 
##  dataset_name      (Intercept) 0.00104  0.03225 
##  Residual                      0.21352  0.46208 
## Number of obs: 32807, groups:  
## administration_id, 3146; target_label, 146; dataset_name, 21
## 
## Fixed effects:
##                        Estimate Std. Error t value
## (Intercept)            0.499283   0.014673  34.027
## typeprev_as_distractor 0.011730   0.006257   1.875
## typeprev_as_target     0.005166   0.010895   0.474
## 
## Correlation of Fixed Effects:
##             (Intr) typprv_s_d
## typprv_s_ds -0.131           
## typprv_s_tr -0.067  0.111    
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
## Linear mixed model fit by REML ['lmerMod']
## Formula: correct_late ~ type + (1 | administration_id) + (1 | target_label) +  
##     (1 | dataset_name)
##    Data: prev_any_mod
## 
## REML criterion at convergence: 50617.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.5942 -0.9640 -0.5835  1.0132  1.6125 
## 
## Random effects:
##  Groups            Name        Variance Std.Dev.
##  administration_id (Intercept) 0.000000 0.00000 
##  target_label      (Intercept) 0.011802 0.10864 
##  dataset_name      (Intercept) 0.003945 0.06281 
##  Residual                      0.237133 0.48696 
## Number of obs: 36004, groups:  
## administration_id, 3524; target_label, 151; dataset_name, 24
## 
## Fixed effects:
##                        Estimate Std. Error t value
## (Intercept)            0.485544   0.018259  26.593
## typeprev_as_distractor 0.010141   0.006412   1.582
## typeprev_as_target     0.003285   0.010574   0.311
## 
## Correlation of Fixed Effects:
##             (Intr) typprv_s_d
## typprv_s_ds -0.105           
## typprv_s_tr -0.047  0.126    
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
## Linear mixed model fit by REML ['lmerMod']
## Formula: accuracy ~ type + (1 | administration_id) + (1 | target_label) +  
##     (1 | dataset_name)
##    Data: prev_any_mod
## 
## REML criterion at convergence: 15249.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2174 -0.6275  0.1669  0.7575  2.4308 
## 
## Random effects:
##  Groups            Name        Variance Std.Dev.
##  administration_id (Intercept) 0.008449 0.09192 
##  target_label      (Intercept) 0.004758 0.06898 
##  dataset_name      (Intercept) 0.005881 0.07669 
##  Residual                      0.077325 0.27807 
## Number of obs: 43587, groups:  
## administration_id, 3579; target_label, 151; dataset_name, 24
## 
## Fixed effects:
##                         Estimate Std. Error t value
## (Intercept)             0.663159   0.017688  37.493
## typeprev_as_distractor  0.008137   0.003401   2.393
## typeprev_as_target     -0.029233   0.005692  -5.136
## 
## Correlation of Fixed Effects:
##             (Intr) typprv_s_d
## typprv_s_ds -0.058           
## typprv_s_tr -0.027  0.108
## Linear mixed model fit by REML ['lmerMod']
## Formula: has_rt ~ type + (1 | administration_id) + (1 | target_label) +  
##     (1 | dataset_name)
##    Data: prev_any_mod
## 
## REML criterion at convergence: 56429.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.2640 -0.7236 -0.5877  1.3360  2.0829 
## 
## Random effects:
##  Groups            Name        Variance Std.Dev.
##  administration_id (Intercept) 0.003325 0.05767 
##  target_label      (Intercept) 0.006179 0.07861 
##  dataset_name      (Intercept) 0.005567 0.07461 
##  Residual                      0.208702 0.45684 
## Number of obs: 43718, groups:  
## administration_id, 3579; target_label, 151; dataset_name, 24
## 
## Fixed effects:
##                         Estimate Std. Error t value
## (Intercept)             0.284675   0.018274  15.578
## typeprev_as_distractor -0.012152   0.005482  -2.217
## typeprev_as_target     -0.009256   0.009233  -1.002
## 
## Correlation of Fixed Effects:
##             (Intr) typprv_s_d
## typprv_s_ds -0.090           
## typprv_s_tr -0.040  0.119
## Linear mixed model fit by REML ['lmerMod']
## Formula: rt ~ type + (1 | administration_id) + (1 | target_label) + (1 |  
##     dataset_name)
##    Data: prev_any_mod
## 
## REML criterion at convergence: 215865.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.4186 -0.5408 -0.2536  0.2321  5.0795 
## 
## Random effects:
##  Groups            Name        Variance Std.Dev.
##  administration_id (Intercept)  66202   257.3   
##  target_label      (Intercept)  10582   102.9   
##  dataset_name      (Intercept)  21807   147.7   
##  Residual                      303350   550.8   
## Number of obs: 13830, groups:  
## administration_id, 3146; target_label, 143; dataset_name, 24
## 
## Fixed effects:
##                        Estimate Std. Error t value
## (Intercept)             1101.75      35.81  30.763
## typeprev_as_distractor   -15.15      12.39  -1.223
## typeprev_as_target        10.12      19.60   0.516
## 
## Correlation of Fixed Effects:
##             (Intr) typprv_s_d
## typprv_s_ds -0.109           
## typprv_s_tr -0.038  0.109

-3% difference in accuracy when repeating as the target

## Linear mixed model fit by REML ['lmerMod']
## Formula: correct_early ~ type * trial_order + (1 | administration_id) +  
##     (1 | target_label) + (1 | dataset_name)
##    Data: prev_any_mod
## 
## REML criterion at convergence: 42702.6
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -1.56823 -1.02073 -0.09851  1.05215  1.71887 
## 
## Random effects:
##  Groups            Name        Variance Std.Dev.
##  administration_id (Intercept) 0.000000 0.00000 
##  target_label      (Intercept) 0.011541 0.10743 
##  dataset_name      (Intercept) 0.001068 0.03268 
##  Residual                      0.213509 0.46207 
## Number of obs: 32807, groups:  
## administration_id, 3146; target_label, 146; dataset_name, 21
## 
## Fixed effects:
##                                      Estimate Std. Error t value
## (Intercept)                         0.4957309  0.0151438  32.735
## typeprev_as_distractor             -0.0059683  0.0136462  -0.437
## typeprev_as_target                  0.0101568  0.0313026   0.324
## trial_order                         0.0005131  0.0003857   1.330
## typeprev_as_distractor:trial_order  0.0007898  0.0007595   1.040
## typeprev_as_target:trial_order     -0.0004517  0.0012905  -0.350
## 
## Correlation of Fixed Effects:
##              (Intr) typprv_s_d typprv_s_t trl_rd typprv_s_d:_
## typprv_s_ds  -0.145                                          
## typprv_s_tr  -0.060  0.051                                   
## trial_order  -0.239  0.190      0.106                        
## typprv_s_d:_  0.145 -0.865     -0.053     -0.431             
## typprv_s_t:_  0.076 -0.073     -0.926     -0.264  0.130      
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
## Linear mixed model fit by REML ['lmerMod']
## Formula: correct_late ~ type * trial_order + (1 | administration_id) +  
##     (1 | target_label) + (1 | dataset_name)
##    Data: prev_any_mod
## 
## REML criterion at convergence: 50645.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.5929 -0.9637 -0.5825  1.0159  1.6131 
## 
## Random effects:
##  Groups            Name        Variance Std.Dev.
##  administration_id (Intercept) 0.000000 0.00000 
##  target_label      (Intercept) 0.011683 0.10809 
##  dataset_name      (Intercept) 0.003822 0.06183 
##  Residual                      0.237096 0.48693 
## Number of obs: 36004, groups:  
## administration_id, 3524; target_label, 151; dataset_name, 24
## 
## Fixed effects:
##                                      Estimate Std. Error t value
## (Intercept)                         0.4834960  0.0184560  26.197
## typeprev_as_distractor             -0.0201649  0.0136926  -1.473
## typeprev_as_target                  0.0084498  0.0270039   0.313
## trial_order                         0.0005360  0.0004025   1.332
## typeprev_as_distractor:trial_order  0.0015333  0.0007724   1.985
## typeprev_as_target:trial_order     -0.0004896  0.0011753  -0.417
## 
## Correlation of Fixed Effects:
##              (Intr) typprv_s_d typprv_s_t trl_rd typprv_s_d:_
## typprv_s_ds  -0.129                                          
## typprv_s_tr  -0.056  0.085                                   
## trial_order  -0.193  0.188      0.103                        
## typprv_s_d:_  0.130 -0.859     -0.077     -0.437             
## typprv_s_t:_  0.074 -0.105     -0.906     -0.285  0.164      
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
## Linear mixed model fit by REML ['lmerMod']
## Formula: accuracy ~ type * trial_order + (1 | administration_id) + (1 |  
##     target_label) + (1 | dataset_name)
##    Data: prev_any_mod
## 
## REML criterion at convergence: 15281.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2128 -0.6265  0.1669  0.7577  2.4236 
## 
## Random effects:
##  Groups            Name        Variance Std.Dev.
##  administration_id (Intercept) 0.008398 0.09164 
##  target_label      (Intercept) 0.004792 0.06922 
##  dataset_name      (Intercept) 0.005820 0.07629 
##  Residual                      0.077332 0.27809 
## Number of obs: 43587, groups:  
## administration_id, 3579; target_label, 151; dataset_name, 24
## 
## Fixed effects:
##                                      Estimate Std. Error t value
## (Intercept)                         6.646e-01  1.775e-02  37.447
## typeprev_as_distractor             -7.998e-03  7.276e-03  -1.099
## typeprev_as_target                 -5.449e-03  1.449e-02  -0.376
## trial_order                        -3.592e-05  2.191e-04  -0.164
## typeprev_as_distractor:trial_order  9.878e-04  4.136e-04   2.389
## typeprev_as_target:trial_order     -1.072e-03  6.358e-04  -1.685
## 
## Correlation of Fixed Effects:
##              (Intr) typprv_s_d typprv_s_t trl_rd typprv_s_d:_
## typprv_s_ds  -0.073                                          
## typprv_s_tr  -0.032  0.079                                   
## trial_order  -0.114  0.173      0.101                        
## typprv_s_d:_  0.076 -0.859     -0.073     -0.423             
## typprv_s_t:_  0.043 -0.096     -0.905     -0.282  0.154
## Linear mixed model fit by REML ['lmerMod']
## Formula: has_rt ~ type * trial_order + (1 | administration_id) + (1 |  
##     target_label) + (1 | dataset_name)
##    Data: prev_any_mod
## 
## REML criterion at convergence: 56457.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.2634 -0.7234 -0.5876  1.3353  2.0800 
## 
## Random effects:
##  Groups            Name        Variance Std.Dev.
##  administration_id (Intercept) 0.003318 0.05760 
##  target_label      (Intercept) 0.006109 0.07816 
##  dataset_name      (Intercept) 0.005601 0.07484 
##  Residual                      0.208672 0.45681 
## Number of obs: 43718, groups:  
## administration_id, 3579; target_label, 151; dataset_name, 24
## 
## Fixed effects:
##                                      Estimate Std. Error t value
## (Intercept)                         0.2920061  0.0185783  15.718
## typeprev_as_distractor             -0.0002779  0.0117322  -0.024
## typeprev_as_target                 -0.0149148  0.0234686  -0.636
## trial_order                        -0.0009940  0.0003501  -2.839
## typeprev_as_distractor:trial_order -0.0002415  0.0006654  -0.363
## typeprev_as_target:trial_order      0.0007599  0.0010268   0.740
## 
## Correlation of Fixed Effects:
##              (Intr) typprv_s_d typprv_s_t trl_rd typprv_s_d:_
## typprv_s_ds  -0.112                                          
## typprv_s_tr  -0.047  0.083                                   
## trial_order  -0.168  0.183      0.102                        
## typprv_s_d:_  0.114 -0.859     -0.075     -0.434             
## typprv_s_t:_  0.063 -0.102     -0.905     -0.282  0.161
## Linear mixed model fit by REML ['lmerMod']
## Formula: 
## rt ~ type * trial_order + (1 | administration_id) + (1 | target_label) +  
##     (1 | dataset_name)
##    Data: prev_any_mod
## 
## REML criterion at convergence: 215848.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.4295 -0.5414 -0.2545  0.2342  5.0634 
## 
## Random effects:
##  Groups            Name        Variance Std.Dev.
##  administration_id (Intercept)  66021   256.9   
##  target_label      (Intercept)  11101   105.4   
##  dataset_name      (Intercept)  22140   148.8   
##  Residual                      303193   550.6   
## Number of obs: 13830, groups:  
## administration_id, 3146; target_label, 143; dataset_name, 24
## 
## Fixed effects:
##                                     Estimate Std. Error t value
## (Intercept)                        1092.8663    36.8082  29.691
## typeprev_as_distractor               36.8202    27.2081   1.353
## typeprev_as_target                  -95.1504    51.2296  -1.857
## trial_order                           0.5556     0.7613   0.730
## typeprev_as_distractor:trial_order   -3.3319     1.5145  -2.200
## typeprev_as_target:trial_order        4.5276     2.2466   2.015
## 
## Correlation of Fixed Effects:
##              (Intr) typprv_s_d typprv_s_t trl_rd typprv_s_d:_
## typprv_s_ds  -0.139                                          
## typprv_s_tr  -0.044  0.082                                   
## trial_order  -0.182  0.169      0.103                        
## typprv_s_d:_  0.137 -0.866     -0.075     -0.412             
## typprv_s_t:_  0.063 -0.098     -0.910     -0.280  0.153

no substantial differences, even wipes out the -3% we were seeing without trial effects

Summary

The effects of having a target image that has been seen 1 time previously (as distractor or target), versus a target image that is being seen for the first time are (if they exist) have central estimates around 1% of the time more or less looking (both for windows around 0 and actual accuracy). These effects may well interact with trial order, although again, effects and interactions, if they exist, are small.