library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.2 ✔ tibble 3.3.0
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.1.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(readxl)
library(pastecs)
##
## Attaching package: 'pastecs'
##
## The following objects are masked from 'package:dplyr':
##
## first, last
##
## The following object is masked from 'package:tidyr':
##
## extract
setwd("C:/Users/KaeRo/Desktop/R Studio/Reseach Data Selection")
library(readxl)
district <- read_excel("district.xls")
Cleaned_hypo<-district %>% select(DPSTTOSA,DPSTWHFP) %>% drop_na()
- From the data you have chosen, select a variable that you are
interested in
# Variable I selected is DPSTWHFP, meaning percentage of White Teachers in a District
- Use pastecs::stat.desc to describe the variable. Include a few
sentences about what the variable is and what it’s measuring.
pastecs::stat.desc(Cleaned_hypo$DPSTWHFP, norm=T)
## nbr.val nbr.null nbr.na min max
## 1.203000e+03 1.200000e+01 0.000000e+00 0.000000e+00 1.000000e+02
## range sum median mean SE.mean
## 1.000000e+02 8.616490e+04 8.240000e+01 7.162502e+01 8.073503e-01
## CI.mean.0.95 var std.dev coef.var skewness
## 1.583973e+00 7.841329e+02 2.800237e+01 3.909580e-01 -1.198382e+00
## skew.2SE kurtosis kurt.2SE normtest.W normtest.p
## -8.494993e+00 2.477781e-01 8.789401e-01 8.250715e-01 2.703655e-34
summary(Cleaned_hypo$DPSTWHFP)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00 58.85 82.40 71.63 92.60 100.00
#The variable shows the percentage of teachers that are white in a school district. You can see that there are some school districts with no white teachers (0%) and some with all white teachers (100%).
- Remove NA’s if needed using dplyr:filter (or anything similar)
#Done on line 19
- Provide a histogram of the variable (as shown in this lesson)
hist(Cleaned_hypo$DPSTWHFP)

- transform the variable using the log transformation or square root
transformation (whatever is more appropriate) using dplyr::mutate or
something similar
transformed_cleaned_district<- Cleaned_hypo %>% mutate(DPSTWHFP_log=log(DPSTWHFP))
- provide a histogram of the transformed variable
hist(transformed_cleaned_district$DPSTWHFP_log)
