# Load packages
# Core
library(tidyverse)
library(tidyquant)
Collect individual returns into a portfolio by assigning a weight to each stock
Choose your stocks.
from 2012-12-31 to 2017-12-31
symbols <- c("NVDA", "INTC", "GOOG", "AMD", "AAPL")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2027-12-31")
##2 Convert prices to returns (quarterly)
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "quarterly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
##3 Assign a weight to each asset (change the weigting scheme)
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AAPL" "AMD" "GOOG" "INTC" "NVDA"
#"NVDA" "INTC" "GOOG" "AMD" "AAPL"
weights <- c(0.20, 0.15, 0.15, 0.30, 0.25)
weights
## [1] 0.20 0.15 0.15 0.30 0.25
# 0.20 0.15 0.15 0.30 0.25
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 AAPL 0.2
## 2 AMD 0.15
## 3 GOOG 0.15
## 4 INTC 0.3
## 5 NVDA 0.25
##4 Build a portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "quarters")
portfolio_returns_tbl
## # A tibble: 52 × 2
## date portfolio.returns
## <date> <dbl>
## 1 2013-03-28 0.0241
## 2 2013-06-28 0.123
## 3 2013-09-30 0.0403
## 4 2013-12-31 0.122
## 5 2014-03-31 0.0270
## 6 2014-06-30 0.117
## 7 2014-09-30 0.0245
## 8 2014-12-31 0.00478
## 9 2015-03-31 0.000522
## 10 2015-06-30 -0.0364
## # ℹ 42 more rows
##5 Plot: Portfolio Histogram and Density
portfolio_returns_tbl %>%
ggplot(mapping = aes(x = portfolio.returns)) +
geom_histogram(fill = "cornflowerblue", binwidth = 0.01) +
# This creates the blue form/graph
geom_density() +
# This creates the line
# Formatting
scale_x_continuous(labels = scales::percent_format()) +
labs(x= "returns",
y = "distribution",
title = "Portfolio Histogram & Density ")
What return should you expect from the portfolio in a typical quarter? With my returns ranging from -40% to 40% I should expect around -5% and 23% returns on my portfolio as that is the highest distribution area and has a spike of density in those markers as shown in the curve of the plot. I can also expect to have a positive return more often than not as there is more distribution above the 0% on the graph showing a typical return of around 10 percent on average.