Rationale

Priming theory suggests that exposure to certain subjects can influence how they are perceived and later respond. In our case, we expose children to violent and non-violent video games in order to determine their aggression during recess. We should expect the children to be more aggressive after playing violent video games like Minecraft, and slightly aggressive after playing a cooking simulator. They should be barely aggressive after playing The Sims, a non-violent game.

Hypothesis

Average aggression within the children will differ for at least two of the groups playing violent and non-violent video games.

Variables & method

Our independent variable is the type of video games played, ranking from more violent ot less violent. Minecraft is the most violent, while the Cooking Game is less, and The Sims is the least. Our dependent variable is the level of kids’ aggression on the playground after playing the video games offered before recess. We chose the ANOVA test method because he DV is continuous, the IV is categorical, and the IV has three or more categories. This is the best way to test priming theory.

Results & discussion

The results support the hypothesis. Specifically, all three groups have significantly different average levels of aggression, with aggression increasing after more violent video games. A one-way ANOVA test was conducted to examine whether the type of video game played (Minecraft, Sims, or Cooking Game) affected children’s levels of playground aggression. The analysis revealed a significant main effect of game type on aggression (< .001).

Post-hoc comparisons using the Tukey HSD test indicated that children who played Minecraft (M = higher aggression) showed significantly more aggressive behaviors than those who played either the Sims (mean difference = 14.59, p < .001) or the Cooking Game (mean difference = 11.64, p < .001). Additionally, children who played the Sims also exhibited slightly more aggression than those who played the Cooking Game (mean difference = 2.95, p < .001).

Descriptive Statistics by Group
IV count mean sd min max
Cooking game 45 7.98 1.86 5.0 11.9
Minecraft 45 19.62 2.48 15.4 24.8
Sims 45 5.03 1.85 2.1 9.3
Shapiro-Wilk Normality Test by Group
IV W_statistic p_value
Cooking game 0.95 0.062
Minecraft 0.96 0.136
Sims 0.97 0.294
Note. If any p-value figures are 0.05 or less, if one or more group distributions appear non-normal, and any group sizes are less than 40, consider using the Kruskal-Wallis and Post-hoc Dunn’s Test results instead of the ANOVA and Tukey HSD Post-hoc results.
ANOVA Test Results
Statistic df df_resid p_value
516.05 2 86.69692 < .001
Tukey HSD Post-hoc Results
Comparison diff lwr upr p adj
Minecraft-Cooking game 11.64 10.60 12.68 < .001
Sims-Cooking game -2.95 -3.99 -1.91 < .001
Sims-Minecraft -14.59 -15.63 -13.55 < .001
Kruskal-Wallis Test Results
Statistic df p_value
104.92 2 < .001
Post-hoc Dunn’s Test Results
Comparison Z P.unadj P.adj
Cooking game - Minecraft -6.21 < .001 < .001
Cooking game - Sims 3.95 < .001 < .001
Minecraft - Sims 10.16 < .001 < .001

Code:

# ============================================================
#  Setup: Install and Load Required Packages
# ============================================================
if (!require("tidyverse")) install.packages("tidyverse")
if (!require("gt")) install.packages("gt")
if (!require("gtExtras")) install.packages("gtExtras")
if (!require("FSA")) install.packages("FSA")
if (!require("plotly")) install.packages("plotly")

library(tidyverse)
library(gt)
library(gtExtras)
library(FSA)
library(plotly)

options(scipen = 999) # suppress scientific notation

# ============================================================
#  Step 1: Load Data
# ============================================================
mydata <- read.csv("Priming.csv") # <-- Edit YOURFILENAME.csv

# Specify DV and IV (edit column names here)
mydata$DV <- mydata$Value
mydata$IV <- mydata$Group

# ============================================================
#  Step 2: Visualize Group Distributions (Interactive)
# ============================================================
# Compute group means
group_means <- mydata %>%
  group_by(IV) %>%
  summarise(mean_value = mean(DV), .groups = "drop")

# Interactive plot (boxplot + group means)
box_plot <- plot_ly() %>%
  # Boxplot trace
  add_trace(
    data = mydata,
    x = ~IV, y = ~DV,
    type = "box",
    boxpoints = "outliers",   # only applies here
    marker = list(color = "red", size = 4),  # outlier style
    line = list(color = "black"),
    fillcolor = "royalblue",
    name = ""
  ) %>%
  # Group means (diamonds)
  add_trace(
    data = group_means,
    x = ~IV, y = ~mean_value,
    type = "scatter", mode = "markers",
    marker = list(
      symbol = "diamond", size = 9,
      color = "black", line = list(color = "white", width = 1)
    ),
    text = ~paste0("Mean = ", round(mean_value, 2)),
    hoverinfo = "text",
    name = "Group Mean"
  ) %>%
  layout(
    title = "Interactive Group Distributions with Means",
    xaxis = list(title = "Independent Variable (IV)"),
    yaxis = list(title = "Dependent Variable (DV)"),
    showlegend = FALSE
  )

# ============================================================
#  Step 3: Descriptive Statistics by Group
# ============================================================
desc_stats <- mydata %>%
  group_by(IV) %>%
  summarise(
    count = n(),
    mean = mean(DV, na.rm = TRUE),
    sd   = sd(DV, na.rm = TRUE),
    min  = min(DV, na.rm = TRUE),
    max  = max(DV, na.rm = TRUE)
  )

desc_table <- desc_stats %>%
  mutate(across(where(is.numeric), ~round(.x, 2))) %>%
  gt() %>%
  gt_theme_538() %>%
  tab_header(title = "Descriptive Statistics by Group")

# ============================================================
#  Step 4: Test Normality (Shapiro-Wilk)
# ============================================================
shapiro_results <- mydata %>%
  group_by(IV) %>%
  summarise(
    W_statistic = shapiro.test(DV)$statistic,
    p_value = shapiro.test(DV)$p.value
  )

shapiro_table <- shapiro_results %>%
  mutate(
    W_statistic = round(W_statistic, 2),
    p_value = ifelse(p_value < .001, "< .001", sprintf("%.3f", p_value))
  ) %>%
  gt() %>%
  gt_theme_538() %>%
  tab_header(title = "Shapiro-Wilk Normality Test by Group") %>%
  tab_source_note(
    source_note = "Note. If any p-value figures are 0.05 or less, if one or more group distributions appear non-normal, and any group sizes are less than 40, consider using the Kruskal-Wallis and Post-hoc Dunn’s Test results instead of the ANOVA and Tukey HSD Post-hoc results."
  )

# ============================================================
#  Step 5a: Non-Parametric Test (Kruskal-Wallis + Dunn)
# ============================================================
kruskal_res <- kruskal.test(DV ~ IV, data = mydata)

kruskal_table <- data.frame(
  Statistic = round(kruskal_res$statistic, 2),
  df = kruskal_res$parameter,
  p_value = ifelse(kruskal_res$p.value < .001, "< .001",
                   sprintf("%.3f", kruskal_res$p.value))
) %>%
  gt() %>%
  gt_theme_538() %>%
  tab_header(title = "Kruskal-Wallis Test Results")

dunn_res <- dunnTest(DV ~ IV, data = mydata, method = "bonferroni")$res

dunn_table <- dunn_res %>%
  mutate(
    Z = round(Z, 2),
    P.unadj = ifelse(P.unadj < .001, "< .001", sprintf("%.3f", P.unadj)),
    P.adj   = ifelse(P.adj < .001, "< .001", sprintf("%.3f", P.adj))
  ) %>%
  gt() %>%
  gt_theme_538() %>%
  tab_header(title = "Post-hoc Dunn’s Test Results")

# ============================================================
#  Step 5b: Parametric Test (ANOVA + Tukey)
# ============================================================
anova_res <- oneway.test(DV ~ IV, data = mydata, var.equal = FALSE)

anova_table <- data.frame(
  Statistic = round(anova_res$statistic, 2),
  df = anova_res$parameter[1],
  df_resid = anova_res$parameter[2],
  p_value = ifelse(anova_res$p.value < .001, "< .001",
                   sprintf("%.3f", anova_res$p.value))
) %>%
  gt() %>%
  gt_theme_538() %>%
  tab_header(title = "ANOVA Test Results")

anova_model <- aov(DV ~ IV, data = mydata)
tukey_res <- TukeyHSD(anova_model)$IV %>% as.data.frame()

tukey_table <- tukey_res %>%
  rownames_to_column("Comparison") %>%
  mutate(
    diff = round(diff, 2),
    lwr = round(lwr, 2),
    upr = round(upr, 2),
    `p adj` = ifelse(`p adj` < .001, "< .001", sprintf("%.3f", `p adj`))
  ) %>%
  gt() %>%
  gt_theme_538() %>%
  tab_header(title = "Tukey HSD Post-hoc Results")

# ============================================================
#  Step 6: Display Key Results
# ============================================================
# Interactive box plot
box_plot

# Tables
desc_table
shapiro_table
anova_table
tukey_table
kruskal_table
dunn_table