q1<-inner_join(customers , orders)
## Joining with `by = join_by(customer_id)`
There are four rows in the result.
Inner join returns all rows from both tables where there is a match. Therefore the rows not returned did not have a match in the other table
head(q1)
## # A tibble: 4 × 6
## customer_id name city order_id product amount
## <dbl> <chr> <chr> <dbl> <chr> <dbl>
## 1 1 Alice New York 101 Laptop 1200
## 2 2 Bob Los Angeles 102 Phone 800
## 3 2 Bob Los Angeles 104 Desktop 1500
## 4 3 Charlie Chicago 103 Tablet 300
Left join: customers on the left, orders on the right
q2 <- customers %>%
left_join(orders, by = "customer_id")
There are six rows in the result
Display the result
head(q2)
## # A tibble: 6 × 6
## customer_id name city order_id product amount
## <dbl> <chr> <chr> <dbl> <chr> <dbl>
## 1 1 Alice New York 101 Laptop 1200
## 2 2 Bob Los Angeles 102 Phone 800
## 3 2 Bob Los Angeles 104 Desktop 1500
## 4 3 Charlie Chicago 103 Tablet 300
## 5 4 David Houston NA <NA> NA
## 6 5 Eve Phoenix NA <NA> NA
q3<-right_join(customers, orders, by="customer_id")
There are six rows in the result
Customer 5 and 6 have NUll for customer name and city. These orders must haven’t collected the customer name and city
head(q3)
## # A tibble: 6 × 6
## customer_id name city order_id product amount
## <dbl> <chr> <chr> <dbl> <chr> <dbl>
## 1 1 Alice New York 101 Laptop 1200
## 2 2 Bob Los Angeles 102 Phone 800
## 3 2 Bob Los Angeles 104 Desktop 1500
## 4 3 Charlie Chicago 103 Tablet 300
## 5 6 <NA> <NA> 105 Camera 600
## 6 7 <NA> <NA> 106 Printer 150
q4<-full_join(customers, orders, by="customer_id")
There are eight rows in the result
Charlie and David don’t have the product or the amount. Camera and Printer do not have a name or city. There is missing data in this data set so full join is leaving it blank.
head(q4)
## # A tibble: 6 × 6
## customer_id name city order_id product amount
## <dbl> <chr> <chr> <dbl> <chr> <dbl>
## 1 1 Alice New York 101 Laptop 1200
## 2 2 Bob Los Angeles 102 Phone 800
## 3 2 Bob Los Angeles 104 Desktop 1500
## 4 3 Charlie Chicago 103 Tablet 300
## 5 4 David Houston NA <NA> NA
## 6 5 Eve Phoenix NA <NA> NA
q5<- semi_join(customers, orders, by="customer_id")
There are three rows in the result
Inner join includes customer id, name, city, order id, product and amount. Semi join only takes from the left table, including customer id, name, and city.
head(q5)
## # A tibble: 3 × 3
## customer_id name city
## <dbl> <chr> <chr>
## 1 1 Alice New York
## 2 2 Bob Los Angeles
## 3 3 Charlie Chicago
q6<-full_join(customers, orders, by="customer_id")
Alice,Bob,Bob,Charlie,David,Eve
Bob could have placed two orders, David and Eve order information isn’t included, and finally the last two don’t have customers.
head(q6)
## # A tibble: 6 × 6
## customer_id name city order_id product amount
## <dbl> <chr> <chr> <dbl> <chr> <dbl>
## 1 1 Alice New York 101 Laptop 1200
## 2 2 Bob Los Angeles 102 Phone 800
## 3 2 Bob Los Angeles 104 Desktop 1500
## 4 3 Charlie Chicago 103 Tablet 300
## 5 4 David Houston NA <NA> NA
## 6 5 Eve Phoenix NA <NA> NA
I would do a full join because it includes customers that haven’t ordered yet and those who have.
I would do a inner join because it shows all the customers who have placed orders
q7a<-inner_join(customers , orders)
## Joining with `by = join_by(customer_id)`
q7b<-full_join(customers, orders, by="customer_id")
head(q7a)
## # A tibble: 4 × 6
## customer_id name city order_id product amount
## <dbl> <chr> <chr> <dbl> <chr> <dbl>
## 1 1 Alice New York 101 Laptop 1200
## 2 2 Bob Los Angeles 102 Phone 800
## 3 2 Bob Los Angeles 104 Desktop 1500
## 4 3 Charlie Chicago 103 Tablet 300
head(q7b)
## # A tibble: 6 × 6
## customer_id name city order_id product amount
## <dbl> <chr> <chr> <dbl> <chr> <dbl>
## 1 1 Alice New York 101 Laptop 1200
## 2 2 Bob Los Angeles 102 Phone 800
## 3 2 Bob Los Angeles 104 Desktop 1500
## 4 3 Charlie Chicago 103 Tablet 300
## 5 4 David Houston NA <NA> NA
## 6 5 Eve Phoenix NA <NA> NA