Results & discussion
(Display any relevant figures or tables from the analysis, interpret
the findings, and indicate whether the findings supported the
hypothesis.)
# ============================================================
# Setup: Install and Load Required Packages
# ============================================================
if (!require("tidyverse")) install.packages("tidyverse")
## Loading required package: tidyverse
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.2 ✔ tibble 3.3.0
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.1.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
if (!require("gt")) install.packages("gt")
## Loading required package: gt
if (!require("gtExtras")) install.packages("gtExtras")
## Loading required package: gtExtras
if (!require("FSA")) install.packages("FSA")
## Loading required package: FSA
## ## FSA v0.10.0. See citation('FSA') if used in publication.
## ## Run fishR() for related website and fishR('IFAR') for related book.
if (!require("plotly")) install.packages("plotly")
## Loading required package: plotly
##
## Attaching package: 'plotly'
##
## The following object is masked from 'package:ggplot2':
##
## last_plot
##
## The following object is masked from 'package:stats':
##
## filter
##
## The following object is masked from 'package:graphics':
##
## layout
library(tidyverse)
library(gt)
library(gtExtras)
library(FSA)
library(plotly)
options(scipen = 999) # suppress scientific notation
# ============================================================
# Step 1: Load Data
# ============================================================
mydata <- read.csv("Priming.csv") # <-- Edit YOURFILENAME.csv
# Specify DV and IV (edit column names here)
mydata$DV <- mydata$Value
mydata$IV <- mydata$Group
# ============================================================
# Step 2: Visualize Group Distributions (Interactive)
# ============================================================
# Compute group means
group_means <- mydata %>%
group_by(IV) %>%
summarise(mean_value = mean(DV), .groups = "drop")
# Interactive plot (boxplot + group means)
box_plot <- plot_ly() %>%
# Boxplot trace
add_trace(
data = mydata,
x = ~IV, y = ~DV,
type = "box",
boxpoints = "outliers", # only applies here
marker = list(color = "red", size = 4), # outlier style
line = list(color = "black"),
fillcolor = "royalblue",
name = ""
) %>%
# Group means (diamonds)
add_trace(
data = group_means,
x = ~IV, y = ~mean_value,
type = "scatter", mode = "markers",
marker = list(
symbol = "diamond", size = 9,
color = "black", line = list(color = "white", width = 1)
),
text = ~paste0("Mean = ", round(mean_value, 2)),
hoverinfo = "text",
name = "Group Mean"
) %>%
layout(
title = "Interactive Group Distributions with Means",
xaxis = list(title = "Independent Variable (IV)"),
yaxis = list(title = "Dependent Variable (DV)"),
showlegend = FALSE
)
# ============================================================
# Step 3: Descriptive Statistics by Group
# ============================================================
desc_stats <- mydata %>%
group_by(IV) %>%
summarise(
count = n(),
mean = mean(DV, na.rm = TRUE),
sd = sd(DV, na.rm = TRUE),
min = min(DV, na.rm = TRUE),
max = max(DV, na.rm = TRUE)
)
desc_table <- desc_stats %>%
mutate(across(where(is.numeric), ~round(.x, 2))) %>%
gt() %>%
gt_theme_538() %>%
tab_header(title = "Descriptive Statistics by Group")
## Table has no assigned ID, using random ID 'crhdzffcik' to apply `gt::opt_css()`
## Avoid this message by assigning an ID: `gt(id = '')` or `gt_theme_538(quiet = TRUE)`
# ============================================================
# Step 4: Test Normality (Shapiro-Wilk)
# ============================================================
shapiro_results <- mydata %>%
group_by(IV) %>%
summarise(
W_statistic = shapiro.test(DV)$statistic,
p_value = shapiro.test(DV)$p.value
)
shapiro_table <- shapiro_results %>%
mutate(
W_statistic = round(W_statistic, 2),
p_value = ifelse(p_value < .001, "< .001", sprintf("%.3f", p_value))
) %>%
gt() %>%
gt_theme_538() %>%
tab_header(title = "Shapiro-Wilk Normality Test by Group") %>%
tab_source_note(
source_note = "Note. If any p-value figures are 0.05 or less, if one or more group distributions appear non-normal, and any group sizes are less than 40, consider using the Kruskal-Wallis and Post-hoc Dunn’s Test results instead of the ANOVA and Tukey HSD Post-hoc results."
)
## Table has no assigned ID, using random ID 'zsswdmphvw' to apply `gt::opt_css()`
## Avoid this message by assigning an ID: `gt(id = '')` or `gt_theme_538(quiet = TRUE)`
# ============================================================
# Step 5a: Non-Parametric Test (Kruskal-Wallis + Dunn)
# ============================================================
kruskal_res <- kruskal.test(DV ~ IV, data = mydata)
kruskal_table <- data.frame(
Statistic = round(kruskal_res$statistic, 2),
df = kruskal_res$parameter,
p_value = ifelse(kruskal_res$p.value < .001, "< .001",
sprintf("%.3f", kruskal_res$p.value))
) %>%
gt() %>%
gt_theme_538() %>%
tab_header(title = "Kruskal-Wallis Test Results")
## Table has no assigned ID, using random ID 'zpbgfbchmk' to apply `gt::opt_css()`
## Avoid this message by assigning an ID: `gt(id = '')` or `gt_theme_538(quiet = TRUE)`
dunn_res <- dunnTest(DV ~ IV, data = mydata, method = "bonferroni")$res
## Warning: IV was coerced to a factor.
dunn_table <- dunn_res %>%
mutate(
Z = round(Z, 2),
P.unadj = ifelse(P.unadj < .001, "< .001", sprintf("%.3f", P.unadj)),
P.adj = ifelse(P.adj < .001, "< .001", sprintf("%.3f", P.adj))
) %>%
gt() %>%
gt_theme_538() %>%
tab_header(title = "Post-hoc Dunn’s Test Results")
## Table has no assigned ID, using random ID 'nlailzakwn' to apply `gt::opt_css()`
## Avoid this message by assigning an ID: `gt(id = '')` or `gt_theme_538(quiet = TRUE)`
# ============================================================
# Step 5b: Parametric Test (ANOVA + Tukey)
# ============================================================
anova_res <- oneway.test(DV ~ IV, data = mydata, var.equal = FALSE)
anova_table <- data.frame(
Statistic = round(anova_res$statistic, 2),
df = anova_res$parameter[1],
df_resid = anova_res$parameter[2],
p_value = ifelse(anova_res$p.value < .001, "< .001",
sprintf("%.3f", anova_res$p.value))
) %>%
gt() %>%
gt_theme_538() %>%
tab_header(title = "ANOVA Test Results")
## Table has no assigned ID, using random ID 'powrgfnmql' to apply `gt::opt_css()`
## Avoid this message by assigning an ID: `gt(id = '')` or `gt_theme_538(quiet = TRUE)`
anova_model <- aov(DV ~ IV, data = mydata)
tukey_res <- TukeyHSD(anova_model)$IV %>% as.data.frame()
tukey_table <- tukey_res %>%
rownames_to_column("Comparison") %>%
mutate(
diff = round(diff, 2),
lwr = round(lwr, 2),
upr = round(upr, 2),
`p adj` = ifelse(`p adj` < .001, "< .001", sprintf("%.3f", `p adj`))
) %>%
gt() %>%
gt_theme_538() %>%
tab_header(title = "Tukey HSD Post-hoc Results")
## Table has no assigned ID, using random ID 'vaesdvicto' to apply `gt::opt_css()`
## Avoid this message by assigning an ID: `gt(id = '')` or `gt_theme_538(quiet = TRUE)`
# ============================================================
# Step 6: Display Key Results
# ============================================================
# Interactive box plot
box_plot
# Tables
desc_table
Descriptive Statistics by Group |
IV |
count |
mean |
sd |
min |
max |
Art project |
45 |
4.96 |
1.04 |
2.3 |
7.3 |
Nonviolent game |
45 |
5.86 |
1.06 |
3.6 |
8.4 |
Violent game |
45 |
10.75 |
1.00 |
8.5 |
12.8 |
shapiro_table
Shapiro-Wilk Normality Test by Group |
IV |
W_statistic |
p_value |
Art project |
0.99 |
0.923 |
Nonviolent game |
0.98 |
0.594 |
Violent game |
0.98 |
0.699 |
Note. If any p-value figures are 0.05 or less, if one or more group distributions appear non-normal, and any group sizes are less than 40, consider using the Kruskal-Wallis and Post-hoc Dunn’s Test results instead of the ANOVA and Tukey HSD Post-hoc results. |
anova_table
ANOVA Test Results |
Statistic |
df |
df_resid |
p_value |
420.86 |
2 |
87.94717 |
< .001 |
tukey_table
Tukey HSD Post-hoc Results |
Comparison |
diff |
lwr |
upr |
p adj |
Nonviolent game-Art project |
0.90 |
0.38 |
1.42 |
< .001 |
Violent game-Art project |
5.79 |
5.27 |
6.30 |
< .001 |
Violent game-Nonviolent game |
4.89 |
4.37 |
5.40 |
< .001 |
kruskal_table
Kruskal-Wallis Test Results |
Statistic |
df |
p_value |
95.23 |
2 |
< .001 |
dunn_table
Post-hoc Dunn’s Test Results |
Comparison |
Z |
P.unadj |
P.adj |
Art project - Nonviolent game |
-2.42 |
0.016 |
0.047 |
Art project - Violent game |
-9.40 |
< .001 |
< .001 |
Nonviolent game - Violent game |
-6.98 |
< .001 |
< .001 |
Code:
# ============================================================
# Setup: Install and Load Required Packages
# ============================================================
if (!require("tidyverse")) install.packages("tidyverse")
if (!require("gt")) install.packages("gt")
if (!require("gtExtras")) install.packages("gtExtras")
if (!require("FSA")) install.packages("FSA")
if (!require("plotly")) install.packages("plotly")
library(tidyverse)
library(gt)
library(gtExtras)
library(FSA)
library(plotly)
options(scipen = 999) # suppress scientific notation
# ============================================================
# Step 1: Load Data
# ============================================================
mydata <- read.csv("Priming.csv") # <-- Edit YOURFILENAME.csv
# Specify DV and IV (edit column names here)
mydata$DV <- mydata$Group
mydata$IV <- mydata$Value
# ============================================================
# Step 2: Visualize Group Distributions (Interactive)
# ============================================================
# Compute group means
group_means <- mydata %>%
group_by(IV) %>%
summarise(mean_value = mean(DV), .groups = "drop")
# Interactive plot (boxplot + group means)
box_plot <- plot_ly() %>%
# Boxplot trace
add_trace(
data = mydata,
x = ~IV, y = ~DV,
type = "box",
boxpoints = "outliers", # only applies here
marker = list(color = "red", size = 4), # outlier style
line = list(color = "black"),
fillcolor = "royalblue",
name = ""
) %>%
# Group means (diamonds)
add_trace(
data = group_means,
x = ~IV, y = ~mean_value,
type = "scatter", mode = "markers",
marker = list(
symbol = "diamond", size = 9,
color = "black", line = list(color = "white", width = 1)
),
text = ~paste0("Mean = ", round(mean_value, 2)),
hoverinfo = "text",
name = "Group Mean"
) %>%
layout(
title = "Interactive Group Distributions with Means",
xaxis = list(title = "Independent Variable (IV)"),
yaxis = list(title = "Dependent Variable (DV)"),
showlegend = FALSE
)
# ============================================================
# Step 3: Descriptive Statistics by Group
# ============================================================
desc_stats <- mydata %>%
group_by(IV) %>%
summarise(
count = n(),
mean = mean(DV, na.rm = TRUE),
sd = sd(DV, na.rm = TRUE),
min = min(DV, na.rm = TRUE),
max = max(DV, na.rm = TRUE)
)
desc_table <- desc_stats %>%
mutate(across(where(is.numeric), ~round(.x, 2))) %>%
gt() %>%
gt_theme_538() %>%
tab_header(title = "Descriptive Statistics by Group")
# ============================================================
# Step 4: Test Normality (Shapiro-Wilk)
# ============================================================
shapiro_results <- mydata %>%
group_by(IV) %>%
summarise(
W_statistic = shapiro.test(DV)$statistic,
p_value = shapiro.test(DV)$p.value
)
shapiro_table <- shapiro_results %>%
mutate(
W_statistic = round(W_statistic, 2),
p_value = ifelse(p_value < .001, "< .001", sprintf("%.3f", p_value))
) %>%
gt() %>%
gt_theme_538() %>%
tab_header(title = "Shapiro-Wilk Normality Test by Group") %>%
tab_source_note(
source_note = "Note. If any p-value figures are 0.05 or less, if one or more group distributions appear non-normal, and any group sizes are less than 40, consider using the Kruskal-Wallis and Post-hoc Dunn’s Test results instead of the ANOVA and Tukey HSD Post-hoc results."
)
# ============================================================
# Step 5a: Non-Parametric Test (Kruskal-Wallis + Dunn)
# ============================================================
kruskal_res <- kruskal.test(DV ~ IV, data = mydata)
kruskal_table <- data.frame(
Statistic = round(kruskal_res$statistic, 2),
df = kruskal_res$parameter,
p_value = ifelse(kruskal_res$p.value < .001, "< .001",
sprintf("%.3f", kruskal_res$p.value))
) %>%
gt() %>%
gt_theme_538() %>%
tab_header(title = "Kruskal-Wallis Test Results")
dunn_res <- dunnTest(DV ~ IV, data = mydata, method = "bonferroni")$res
dunn_table <- dunn_res %>%
mutate(
Z = round(Z, 2),
P.unadj = ifelse(P.unadj < .001, "< .001", sprintf("%.3f", P.unadj)),
P.adj = ifelse(P.adj < .001, "< .001", sprintf("%.3f", P.adj))
) %>%
gt() %>%
gt_theme_538() %>%
tab_header(title = "Post-hoc Dunn’s Test Results")
# ============================================================
# Step 5b: Parametric Test (ANOVA + Tukey)
# ============================================================
anova_res <- oneway.test(DV ~ IV, data = mydata, var.equal = FALSE)
anova_table <- data.frame(
Statistic = round(anova_res$statistic, 2),
df = anova_res$parameter[1],
df_resid = anova_res$parameter[2],
p_value = ifelse(anova_res$p.value < .001, "< .001",
sprintf("%.3f", anova_res$p.value))
) %>%
gt() %>%
gt_theme_538() %>%
tab_header(title = "ANOVA Test Results")
anova_model <- aov(DV ~ IV, data = mydata)
tukey_res <- TukeyHSD(anova_model)$IV %>% as.data.frame()
tukey_table <- tukey_res %>%
rownames_to_column("Comparison") %>%
mutate(
diff = round(diff, 2),
lwr = round(lwr, 2),
upr = round(upr, 2),
`p adj` = ifelse(`p adj` < .001, "< .001", sprintf("%.3f", `p adj`))
) %>%
gt() %>%
gt_theme_538() %>%
tab_header(title = "Tukey HSD Post-hoc Results")
# ============================================================
# Step 6: Display Key Results
# ============================================================
# Interactive box plot
box_plot
# Tables
desc_table
shapiro_table
anova_table
tukey_table
kruskal_table
dunn_table