Rationale

Media priming theory says that what people see in media can temporarily influence how they think and act. Playing a violent video game might make aggressive thoughts easier to access, leading to more aggressive behavior right afterward. This study tests whether children who play a violent game act more aggressively during recess than those who play a nonviolent game or do an art activity.

Hypothesis

Students who play the violent video game (“Exponent Fighter”) before recess will spend more time acting aggressively during recess than those who play a nonviolent game or do an art project.

Variables and Methods

Independent Variable (IV): Type of pre-recess activity (three groups: violent game, nonviolent game, or art project).

Dependent Variable (DV): Minutes of aggressive behavior during recess, recorded by observers.

Participants: 135 fifth-grade students randomly split into three groups of 45.

Procedure: Each group did one activity for 30 minutes before recess. Observers then recorded how many minutes each student spent acting aggressively. The dataset, Priming.csv, includes: • Group – type of activity (violent, nonviolent, or art) • Value – minutes of aggression

Results

Descriptive Statistics by Group
IV count mean sd min max
Art project 45 4.96 1.04 2.3 7.3
Nonviolent game 45 5.86 1.06 3.6 8.4
Violent game 45 10.75 1.00 8.5 12.8
Shapiro-Wilk Normality Test by Group
IV W_statistic p_value
Art project 0.99 0.923
Nonviolent game 0.98 0.594
Violent game 0.98 0.699
Note. If any p-value figures are 0.05 or less, if one or more group distributions appear non-normal, and any group sizes are less than 40, consider using the Kruskal-Wallis and Post-hoc Dunn’s Test results instead of the ANOVA and Tukey HSD Post-hoc results.
ANOVA Test Results
Statistic df df_resid p_value
420.86 2 87.94717 < .001
Tukey HSD Post-hoc Results
Comparison diff lwr upr p adj
Nonviolent game-Art project 0.90 0.38 1.42 < .001
Violent game-Art project 5.79 5.27 6.30 < .001
Violent game-Nonviolent game 4.89 4.37 5.40 < .001
Kruskal-Wallis Test Results
Statistic df p_value
95.23 2 < .001
Post-hoc Dunn’s Test Results
Comparison Z P.unadj P.adj
Art project - Nonviolent game -2.42 0.016 0.047
Art project - Violent game -9.40 < .001 < .001
Nonviolent game - Violent game -6.98 < .001 < .001

Code

# ============================================================
#  Setup: Install and Load Required Packages
# ============================================================
if (!require("tidyverse")) install.packages("tidyverse")
if (!require("gt")) install.packages("gt")
if (!require("gtExtras")) install.packages("gtExtras")
if (!require("FSA")) install.packages("FSA")
if (!require("plotly")) install.packages("plotly")

library(tidyverse)
library(gt)
library(gtExtras)
library(FSA)
library(plotly)

options(scipen = 999) # suppress scientific notation

# ============================================================
#  Step 1: Load Data
# ============================================================
mydata <- read.csv("Priming.csv") # <-- Edit YOURFILENAME.csv

# Specify DV and IV (edit column names here)
mydata$DV <- mydata$Value
mydata$IV <- mydata$Group

# ============================================================
#  Step 2: Visualize Group Distributions (Interactive)
# ============================================================
# Compute group means
group_means <- mydata %>%
  group_by(IV) %>%
  summarise(mean_value = mean(DV), .groups = "drop")

# Interactive plot (boxplot + group means)
box_plot <- plot_ly() %>%
  # Boxplot trace
  add_trace(
    data = mydata,
    x = ~IV, y = ~DV,
    type = "box",
    boxpoints = "outliers",   # only applies here
    marker = list(color = "red", size = 4),  # outlier style
    line = list(color = "black"),
    fillcolor = "royalblue",
    name = ""
  ) %>%
  # Group means (diamonds)
  add_trace(
    data = group_means,
    x = ~IV, y = ~mean_value,
    type = "scatter", mode = "markers",
    marker = list(
      symbol = "diamond", size = 9,
      color = "black", line = list(color = "white", width = 1)
    ),
    text = ~paste0("Mean = ", round(mean_value, 2)),
    hoverinfo = "text",
    name = "Group Mean"
  ) %>%
  layout(
    title = "Interactive Group Distributions with Means",
    xaxis = list(title = "Independent Variable (IV)"),
    yaxis = list(title = "Dependent Variable (DV)"),
    showlegend = FALSE
  )

# ============================================================
#  Step 3: Descriptive Statistics by Group
# ============================================================
desc_stats <- mydata %>%
  group_by(IV) %>%
  summarise(
    count = n(),
    mean = mean(DV, na.rm = TRUE),
    sd   = sd(DV, na.rm = TRUE),
    min  = min(DV, na.rm = TRUE),
    max  = max(DV, na.rm = TRUE)
  )

desc_table <- desc_stats %>%
  mutate(across(where(is.numeric), ~round(.x, 2))) %>%
  gt() %>%
  gt_theme_538() %>%
  tab_header(title = "Descriptive Statistics by Group")

# ============================================================
#  Step 4: Test Normality (Shapiro-Wilk)
# ============================================================
shapiro_results <- mydata %>%
  group_by(IV) %>%
  summarise(
    W_statistic = shapiro.test(DV)$statistic,
    p_value = shapiro.test(DV)$p.value
  )

shapiro_table <- shapiro_results %>%
  mutate(
    W_statistic = round(W_statistic, 2),
    p_value = ifelse(p_value < .001, "< .001", sprintf("%.3f", p_value))
  ) %>%
  gt() %>%
  gt_theme_538() %>%
  tab_header(title = "Shapiro-Wilk Normality Test by Group") %>%
  tab_source_note(
    source_note = "Note. If any p-value figures are 0.05 or less, if one or more group distributions appear non-normal, and any group sizes are less than 40, consider using the Kruskal-Wallis and Post-hoc Dunn’s Test results instead of the ANOVA and Tukey HSD Post-hoc results."
  )

# ============================================================
#  Step 5a: Non-Parametric Test (Kruskal-Wallis + Dunn)
# ============================================================
kruskal_res <- kruskal.test(DV ~ IV, data = mydata)

kruskal_table <- data.frame(
  Statistic = round(kruskal_res$statistic, 2),
  df = kruskal_res$parameter,
  p_value = ifelse(kruskal_res$p.value < .001, "< .001",
                   sprintf("%.3f", kruskal_res$p.value))
) %>%
  gt() %>%
  gt_theme_538() %>%
  tab_header(title = "Kruskal-Wallis Test Results")

dunn_res <- dunnTest(DV ~ IV, data = mydata, method = "bonferroni")$res

dunn_table <- dunn_res %>%
  mutate(
    Z = round(Z, 2),
    P.unadj = ifelse(P.unadj < .001, "< .001", sprintf("%.3f", P.unadj)),
    P.adj   = ifelse(P.adj < .001, "< .001", sprintf("%.3f", P.adj))
  ) %>%
  gt() %>%
  gt_theme_538() %>%
  tab_header(title = "Post-hoc Dunn’s Test Results")

# ============================================================
#  Step 5b: Parametric Test (ANOVA + Tukey)
# ============================================================
anova_res <- oneway.test(DV ~ IV, data = mydata, var.equal = FALSE)

anova_table <- data.frame(
  Statistic = round(anova_res$statistic, 2),
  df = anova_res$parameter[1],
  df_resid = anova_res$parameter[2],
  p_value = ifelse(anova_res$p.value < .001, "< .001",
                   sprintf("%.3f", anova_res$p.value))
) %>%
  gt() %>%
  gt_theme_538() %>%
  tab_header(title = "ANOVA Test Results")

anova_model <- aov(DV ~ IV, data = mydata)
tukey_res <- TukeyHSD(anova_model)$IV %>% as.data.frame()

tukey_table <- tukey_res %>%
  rownames_to_column("Comparison") %>%
  mutate(
    diff = round(diff, 2),
    lwr = round(lwr, 2),
    upr = round(upr, 2),
    `p adj` = ifelse(`p adj` < .001, "< .001", sprintf("%.3f", `p adj`))
  ) %>%
  gt() %>%
  gt_theme_538() %>%
  tab_header(title = "Tukey HSD Post-hoc Results")

# ============================================================
#  Step 6: Display Key Results
# ============================================================
# Interactive box plot
box_plot

# Tables
desc_table
shapiro_table
anova_table
tukey_table
kruskal_table
dunn_table