\(\\Y_{ij}=\mu +\tau_{ij}+\epsilon_{ij}\)
\(H_0 :τ_1 =τ_2 =τ_3 =τ_4 =0\) (all mean discharges equal)
\(H_a : τ_I \neq 0\) (at least 1)
Observations<-c(0.34,0.12,1.23,0.70,1.75,0.12,0.91,2.94,2.14,2.36,2.86,4.55,6.31,8.37,9.75,6.09,9.82,7.24,17.15,11.82,10.97,17.20,14.35,16.82)
factor<-c(rep(1,6),rep(2,6),rep(3,6),rep(4,6))
df<-data.frame(factor,Observations)
boxplot(Observations~factor, col="red")
model<-aov(Observations~factor,data=df)
summary(model)
## Df Sum Sq Mean Sq F value Pr(>F)
## factor 1 672.0 672.0 149.9 2.7e-11 ***
## Residuals 22 98.6 4.5
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(model, col= "blue")
library(MASS)
boxcox(Observations~factor,data=df)
trans_Observations<-(sqrt(Observations)-1)/.5
kruskal.test(Observations~factor, data = df)
##
## Kruskal-Wallis rank sum test
##
## data: Observations by factor
## Kruskal-Wallis chi-squared = 21.156, df = 3, p-value = 9.771e-05
Observations<-c(0.34,0.12,1.23,0.70,1.75,0.12,0.91,2.94,2.14,2.36,2.86,4.55,6.31,8.37,9.75,6.09,9.82,7.24,17.15,11.82,10.97,17.20,14.35,16.82)
factor<-c(rep(1,6),rep(2,6),rep(3,6),rep(4,6))
df<-data.frame(factor,Observations)
boxplot(Observations~factor, col="red")
model<-aov(Observations~factor,data=df)
summary(model)
plot(model, col= "blue")
library(MASS)
boxcox(Observations~factor,data=df)
trans_Observations<-(sqrt(Observations)-1)/.5
kruskal.test(Observations~factor, data = df)
COMMENT: Based on the data provided, the sizes of the box-plots differs, hence this shows the variance of the data is different.