library(LearnEDAfunctions)
## Loading required package: dplyr
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
## Loading required package: ggplot2
LearnEDAfunctions::lake
##    Area Depth  PH Wshed   Hions
## 1    55    19 7.1   0.8 1.0e-07
## 2    26    14 6.1   0.3 8.0e-07
## 3  1065    36 7.6   6.3 0.0e+00
## 4   213    71 7.6   4.0 0.0e+00
## 5  1463    35 8.2  33.0 0.0e+00
## 6   180    24 7.1   5.0 1.0e-07
## 7   433    56 6.8   2.5 2.0e-07
## 8   437    30 7.4   2.0 0.0e+00
## 9   207    34 7.4   1.7 0.0e+00
## 10   98    17 7.0   1.5 1.0e-07
## 11   33    32 6.6   0.2 3.0e-07
## 12   30    10 6.2   1.0 6.0e-07
## 13  176    17 7.3   1.0 1.0e-07
## 14   55    43 6.0   0.5 1.0e-06
## 15   96    14 7.8   1.0 0.0e+00
## 16   23    18 6.5   0.3 3.0e-07
## 17  282    24 7.4   2.0 0.0e+00
## 18  124    17 7.0   1.5 1.0e-07
## 19   22    14 6.9   0.2 1.0e-07
## 20  223    17 5.7   1.5 2.0e-06
## 21  107    26 6.8   0.8 2.0e-07
## 22  112    33 7.2   1.2 1.0e-07
## 23  161    25 6.4   1.0 4.0e-07
## 24  301    24 8.6  88.0 0.0e+00
## 25   59     7 7.3   2.0 1.0e-07
## 26   88    13 6.0   0.7 1.0e-06
## 27   97    50 8.6   2.0 0.0e+00
## 28  126    37 6.9   1.0 1.0e-07
## 29  356    17 7.0   2.0 1.0e-07
## 30  148    50 6.8   0.8 2.0e-07
## 31  397    26 6.9   2.0 1.0e-07
## 32   89     9 5.8   1.0 1.6e-06
## 33  237     9 6.6  13.0 3.0e-07
## 34   29    33 6.2   0.2 6.0e-07
## 35  238    19 6.1   1.8 8.0e-07
## 36  189    15 6.5   2.5 3.0e-07
## 37  599    43 8.6   3.0 0.0e+00
## 38  149    11 6.9  65.0 1.0e-07
## 39   34    15 5.8   2.0 1.6e-06
## 40  533    32 7.8  12.0 0.0e+00
## 41   47    65 7.1   0.3 1.0e-07
## 42  170    11 7.5   6.4 0.0e+00
## 43  113    58 7.0   1.0 1.0e-07
## 44  352    16 8.8   8.0 0.0e+00
## 45  187    36 6.4   4.0 4.0e-07
## 46   48    13 6.2   0.8 6.0e-07
## 47   76     9 5.9   0.7 1.3e-06
## 48   52     7 6.7   0.4 2.0e-07
## 49  175    25 7.1   0.9 1.0e-07
## 50  191    45 6.7   3.0 2.0e-07
## 51 1285    60 6.4  80.0 4.0e-07
## 52  124    40 7.5   0.7 0.0e+00
## 53   53    23 6.6   0.7 3.0e-07
## 54  125    89 6.8   1.0 2.0e-07
## 55 3585    39 7.4  10.0 0.0e+00
## 56  211    55 7.2   0.5 1.0e-07
## 57  372    28 7.3   1.4 1.0e-07
## 58   33    21 6.0   1.0 1.0e-06
## 59  172    33 7.2   2.0 1.0e-07
## 60  716    42 7.0   8.0 1.0e-07
## 61  130     7 7.2   2.0 1.0e-07
## 62  610    39 7.0   3.0 1.0e-07
## 63  223    70 7.0   1.5 1.0e-07
## 64 1352    45 6.9  17.0 1.0e-07
## 65   35    14 6.2   0.4 6.0e-07
## 66  132    27 7.0   1.0 1.0e-07
## 67   95    33 6.1   0.9 8.0e-07
## 68   77    23 7.6   0.6 0.0e+00
## 69  185    31 7.1  12.0 1.0e-07
## 70   97    71 6.8   1.0 2.0e-07
## 71   28    38 7.1   0.4 1.0e-07
head(lake)
##   Area Depth  PH Wshed Hions
## 1   55    19 7.1   0.8 1e-07
## 2   26    14 6.1   0.3 8e-07
## 3 1065    36 7.6   6.3 0e+00
## 4  213    71 7.6   4.0 0e+00
## 5 1463    35 8.2  33.0 0e+00
## 6  180    24 7.1   5.0 1e-07

Lake Depth

hist(lake$Depth)
lines(density(lake$Depth, bw=1.5), lwd=2)

plot(density(lake$Depth, bw=1.5),  lwd=2, 
     axes=FALSE, 
     xlab="" ,
     ylab="",
     main="")
box()

par(mfrow=c(2,2))
hist(lake$Depth, main="Raw+")
hist(sqrt(lake$Depth+.05),main="ROOTS")
hist((lake$Depth+.05)^0.001, main="p=0.001")

aplpack::stem.leaf(lake$Depth)
## 1 | 2: represents 12
##  leaf unit: 1
##             n: 71
##    6    0. | 777999
##   15    1* | 011334444
##   26    1. | 55677777899
##   32    2* | 133444
##   (6)   2. | 556678
##   33    3* | 012233334
##   24    3. | 5667899
##   17    4* | 0233
##   13    4. | 55
##   11    5* | 00
##    9    5. | 568
##    6    6* | 0
##    5    6. | 5
##    4    7* | 011
## HI: 89
(letter.values<-lval(lake$Area))
##   depth    lo     hi    mids spreads
## M  36.0 148.0  148.0  148.00     0.0
## H  18.5  76.5  237.5  157.00   161.0
## E   9.5  34.5  485.0  259.75   450.5
## D   5.0  29.0 1065.0  547.00  1036.0
## C   3.0  26.0 1352.0  689.00  1326.0
## B   2.0  23.0 1463.0  743.00  1440.0
## A   1.0  22.0 3585.0 1803.50  3563.0
select(letter.values, mids)
##      mids
## M  148.00
## H  157.00
## E  259.75
## D  547.00
## C  689.00
## B  743.00
## A 1803.50
letter.values%>% mutate(LV=1:7)%>%
  ggplot(aes(LV, mids))+
  geom_point()+ggtitle("Raw Data")

roots<-sqrt(lake$Depth)
aplpack::stem.leaf(roots)
## 1 | 2: represents 1.2
##  leaf unit: 0.1
##             n: 71
##    3     2. | 666
##    9     3* | 000133
##   17     3. | 66777788
##   26     4* | 011111233
##   32     4. | 577888
##   (7)    5* | 0000124
##   32     5. | 566777789
##   23     6* | 00012234
##   15     6. | 5577
##   11     7* | 0044
##    7     7. | 67
##    5     8* | 0344
##          8. | 
##    1     9* | 4
(root.lv <- (roots))
##  [1] 4.358899 3.741657 6.000000 8.426150 5.916080 4.898979 7.483315 5.477226
##  [9] 5.830952 4.123106 5.656854 3.162278 4.123106 6.557439 3.741657 4.242641
## [17] 4.898979 4.123106 3.741657 4.123106 5.099020 5.744563 5.000000 4.898979
## [25] 2.645751 3.605551 7.071068 6.082763 4.123106 7.071068 5.099020 3.000000
## [33] 3.000000 5.744563 4.358899 3.872983 6.557439 3.316625 3.872983 5.656854
## [41] 8.062258 3.316625 7.615773 4.000000 6.000000 3.605551 3.000000 2.645751
## [49] 5.000000 6.708204 7.745967 6.324555 4.795832 9.433981 6.244998 7.416198
## [57] 5.291503 4.582576 5.744563 6.480741 2.645751 6.244998 8.366600 6.708204
## [65] 3.741657 5.196152 5.744563 4.795832 5.567764 8.426150 6.164414
roots <- sqrt(lake$Depth)

root.lv <- lval(roots)

root.lv %>% 
  mutate(LV = 1:7) %>%
  ggplot(aes(LV, mids)) +
  geom_point() +
  ggtitle("Root Data")

logs<-log(lake$Depth)
aplpack::stem.leaf(logs)
## 1 | 2: represents 1.2
##  leaf unit: 0.1
##             n: 71
##    3    1. | 999
##    6    2* | 111
##    9     t | 333
##   11     f | 55
##   18     s | 6666777
##   26    2. | 88888899
##   32    3* | 011111
##   (6)    t | 222223
##   33     f | 444444445555
##   21     s | 66666777
##   13    3. | 8899
##    9    4* | 00001
##    4     t | 222
##    1     f | 4
(logs.lv<-lval(logs))
##   depth       lo       hi     mids   spreads
## M  36.0 3.258097 3.258097 3.258097 0.0000000
## H  18.5 2.802901 3.663562 3.233231 0.8606606
## E   9.5 2.481422 3.959678 3.220550 1.4782558
## D   5.0 2.197225 4.174387 3.185806 1.9771627
## C   3.0 1.945910 4.262680 3.104295 2.3167697
## B   2.0 1.945910 4.262680 3.104295 2.3167697
## A   1.0 1.945910 4.488636 3.217273 2.5427262
logs.lv %>% mutate(LV=1:7) %>%
  ggplot(aes(LV, mids))+
  geom_point()+ggtitle("Log Data")

This data set shows a right-skewed distribution. After applying both square root and logarithmic transformations, the shape becomes more symmetric, as seen in the histograms and letter-value plots. The log transformation produces the most balanced distribution.

Lake Area

library(LearnEDAfunctions)
LearnEDAfunctions::lake
##    Area Depth  PH Wshed   Hions
## 1    55    19 7.1   0.8 1.0e-07
## 2    26    14 6.1   0.3 8.0e-07
## 3  1065    36 7.6   6.3 0.0e+00
## 4   213    71 7.6   4.0 0.0e+00
## 5  1463    35 8.2  33.0 0.0e+00
## 6   180    24 7.1   5.0 1.0e-07
## 7   433    56 6.8   2.5 2.0e-07
## 8   437    30 7.4   2.0 0.0e+00
## 9   207    34 7.4   1.7 0.0e+00
## 10   98    17 7.0   1.5 1.0e-07
## 11   33    32 6.6   0.2 3.0e-07
## 12   30    10 6.2   1.0 6.0e-07
## 13  176    17 7.3   1.0 1.0e-07
## 14   55    43 6.0   0.5 1.0e-06
## 15   96    14 7.8   1.0 0.0e+00
## 16   23    18 6.5   0.3 3.0e-07
## 17  282    24 7.4   2.0 0.0e+00
## 18  124    17 7.0   1.5 1.0e-07
## 19   22    14 6.9   0.2 1.0e-07
## 20  223    17 5.7   1.5 2.0e-06
## 21  107    26 6.8   0.8 2.0e-07
## 22  112    33 7.2   1.2 1.0e-07
## 23  161    25 6.4   1.0 4.0e-07
## 24  301    24 8.6  88.0 0.0e+00
## 25   59     7 7.3   2.0 1.0e-07
## 26   88    13 6.0   0.7 1.0e-06
## 27   97    50 8.6   2.0 0.0e+00
## 28  126    37 6.9   1.0 1.0e-07
## 29  356    17 7.0   2.0 1.0e-07
## 30  148    50 6.8   0.8 2.0e-07
## 31  397    26 6.9   2.0 1.0e-07
## 32   89     9 5.8   1.0 1.6e-06
## 33  237     9 6.6  13.0 3.0e-07
## 34   29    33 6.2   0.2 6.0e-07
## 35  238    19 6.1   1.8 8.0e-07
## 36  189    15 6.5   2.5 3.0e-07
## 37  599    43 8.6   3.0 0.0e+00
## 38  149    11 6.9  65.0 1.0e-07
## 39   34    15 5.8   2.0 1.6e-06
## 40  533    32 7.8  12.0 0.0e+00
## 41   47    65 7.1   0.3 1.0e-07
## 42  170    11 7.5   6.4 0.0e+00
## 43  113    58 7.0   1.0 1.0e-07
## 44  352    16 8.8   8.0 0.0e+00
## 45  187    36 6.4   4.0 4.0e-07
## 46   48    13 6.2   0.8 6.0e-07
## 47   76     9 5.9   0.7 1.3e-06
## 48   52     7 6.7   0.4 2.0e-07
## 49  175    25 7.1   0.9 1.0e-07
## 50  191    45 6.7   3.0 2.0e-07
## 51 1285    60 6.4  80.0 4.0e-07
## 52  124    40 7.5   0.7 0.0e+00
## 53   53    23 6.6   0.7 3.0e-07
## 54  125    89 6.8   1.0 2.0e-07
## 55 3585    39 7.4  10.0 0.0e+00
## 56  211    55 7.2   0.5 1.0e-07
## 57  372    28 7.3   1.4 1.0e-07
## 58   33    21 6.0   1.0 1.0e-06
## 59  172    33 7.2   2.0 1.0e-07
## 60  716    42 7.0   8.0 1.0e-07
## 61  130     7 7.2   2.0 1.0e-07
## 62  610    39 7.0   3.0 1.0e-07
## 63  223    70 7.0   1.5 1.0e-07
## 64 1352    45 6.9  17.0 1.0e-07
## 65   35    14 6.2   0.4 6.0e-07
## 66  132    27 7.0   1.0 1.0e-07
## 67   95    33 6.1   0.9 8.0e-07
## 68   77    23 7.6   0.6 0.0e+00
## 69  185    31 7.1  12.0 1.0e-07
## 70   97    71 6.8   1.0 2.0e-07
## 71   28    38 7.1   0.4 1.0e-07
head(lake)
##   Area Depth  PH Wshed Hions
## 1   55    19 7.1   0.8 1e-07
## 2   26    14 6.1   0.3 8e-07
## 3 1065    36 7.6   6.3 0e+00
## 4  213    71 7.6   4.0 0e+00
## 5 1463    35 8.2  33.0 0e+00
## 6  180    24 7.1   5.0 1e-07
hist(lake$Area)

par(mfrow=c(2,2))
hist(lake$Area, main="Raw+")
hist(sqrt(lake$Area+.05),main="ROOTS")
hist((lake$Area+.05)^0.001, main="p=0.001")

aplpack::stem.leaf(lake$Area)
## 1 | 2: represents 120
##  leaf unit: 10
##             n: 71
##    12    0* | 222223333344
##    26    0. | 55555778899999
##   (11)   1* | 01122223344
##    34    1. | 6777788889
##    24    2* | 0112233
##    17    2. | 8
##    16    3* | 0
##    15    3. | 5579
##    11    4* | 33
##          4. | 
##     9    5* | 3
## HI: 599 610 716 1065 1285 1352 1463 3585
(letter.values <-lval(lake$Area))
##   depth    lo     hi    mids spreads
## M  36.0 148.0  148.0  148.00     0.0
## H  18.5  76.5  237.5  157.00   161.0
## E   9.5  34.5  485.0  259.75   450.5
## D   5.0  29.0 1065.0  547.00  1036.0
## C   3.0  26.0 1352.0  689.00  1326.0
## B   2.0  23.0 1463.0  743.00  1440.0
## A   1.0  22.0 3585.0 1803.50  3563.0
select(letter.values, mids)
##      mids
## M  148.00
## H  157.00
## E  259.75
## D  547.00
## C  689.00
## B  743.00
## A 1803.50
letter.values %>% mutate(LV=1:7) %>%
  ggplot(aes(LV, mids))+
  geom_point()+ggtitle("Raw Data")

roots <-sqrt(lake$Area)
aplpack::stem.leaf(roots)
## 1 | 2: represents 12
##  leaf unit: 1
##             n: 71
##    10     f | 4455555555
##    17     s | 6677777
##    26    0. | 889999999
##    35    1* | 000111111
##   (12)    t | 222333333333
##    24     f | 4444455
##    17     s | 67
##    15    1. | 8899
##    11    2* | 00
##     9     t | 3
##     8     f | 44
##     6     s | 6
## HI: 32.6343377441614 35.8468966578698 36.7695526217005 38.2491829978106 59.8748695196908
(root.lv <-lval(roots))
##   depth        lo       hi     mids   spreads
## M  36.0 12.165525 12.16553 12.16553  0.000000
## H  18.5  8.746381 15.41103 12.07870  6.664645
## E   9.5  5.873516 21.99567 13.93459 16.122153
## D   5.0  5.385165 32.63434 19.00975 27.249173
## C   3.0  5.099020 36.76955 20.93429 31.670533
## B   2.0  4.795832 38.24918 21.52251 33.453351
## A   1.0  4.690416 59.87487 32.28264 55.184454
root.lv %>% mutate(LV= 1:7)%>%
  ggplot(aes(LV, mids))+
  geom_point()+ggtitle("Root Data")

logs <-log(lake$Area)
aplpack::stem.leaf(logs)
## 1 | 2: represents 1.2
##  leaf unit: 0.1
##             n: 71
##     8    3* | 01233444
##    14    3. | 558899
##    21    4* | 0003344
##   (15)   4. | 555556778888889
##    35    5* | 001111122223334444
##    17    5. | 678899
##    11    6* | 00234
##     6    6. | 59
##     4    7* | 122
##          7. | 
##     1    8* | 1
root.lv %>% mutate(LV= 1:7)%>%
  ggplot(aes(LV, mids))+
  geom_point()+ggtitle("Log Data")

recroots <- -1/sqrt(lake$Area)
aplpack::stem.leaf(recroots)
## 1 | 2: represents 0.012
##  leaf unit: 0.001
##             n: 71
## LO: -0.21320071635561 -0.208514414057075
##    3    -19 | 6
##    6    -18 | 852
##    9    -17 | 441
##   10    -16 | 9
##         -15 | 
##   12    -14 | 54
##   17    -13 | 87440
##         -12 | 
##   19    -11 | 43
##   26    -10 | 6522111
##   29     -9 | 644
##   (8)    -8 | 99997721
##   34     -7 | 8665543322
##   24     -6 | 9886644
##   17     -5 | 973210
##   11     -4 | 87300
##    6     -3 | 70
##    4     -2 | 776
##    1     -1 | 6

This data set shows a right-skewed distribution. After applying both square root,logarithmic, and log transformations, the shape becomes more symmetric, as seen in the histograms and letter-value plots. The recipricol roots transformation produces the most balanced distribution.

College Football NIL

 CFB <- read.csv("C:/Users/KayVog22/Downloads/CFB.csv")
head(CFB)
##         Team      NIL
## 1      Texas 22272474
## 2 Ohio State 20253400
## 3        LSU 20137141
## 4    Georgia 18326566
## 5  Texas A&M 17228714
## 6   Michigan 16357054
aplpack::stem.leaf(CFB$NIL)
## 1 | 2: represents 1.2e+07
##  leaf unit: 1e+06
##             n: 55
##    8     t | 23333333
##   16     f | 45555555
##   27     s | 66677777777
##   (8)   0. | 88899999
##   20    1* | 001111
##   14     t | 2333
##   10     f | 4555
##    6     s | 67
##    4    1. | 8
##    3    2* | 00
##    1     t | 2
hist(CFB$NIL)
lines(density(CFB$NIL, bw=1.5), lwd=2)

plot(density(CFB$NIL, bw=1.5),  lwd=2, 
     axes=FALSE, 
     xlab="" ,
     ylab="",
     main="")
box()

par(mfrow=c(2,2))
hist(CFB$NIL, main="Raw")
hist(sqrt(+.05),main="ROOTS")
hist((+.05)^0.001, main="p=0.001")

aplpack::stem.leaf(CFB$NIL)
## 1 | 2: represents 1.2e+07
##  leaf unit: 1e+06
##             n: 55
##    8     t | 23333333
##   16     f | 45555555
##   27     s | 66677777777
##   (8)   0. | 88899999
##   20    1* | 001111
##   14     t | 2333
##   10     f | 4555
##    6     s | 67
##    4    1. | 8
##    3    2* | 00
##    1     t | 2
(letter.values <-lval(CFB$NIL))
##   depth      lo       hi     mids  spreads
## M  28.0 8355617  8355617  8355617        0
## H  14.5 5804650 12191232  8997941  6386582
## E   7.5 3958874 15898822  9928848 11939948
## D   4.0 3308993 18326566 10817780 15017573
## C   2.5 3190207 20195271 11692739 17005064
## B   1.0 2098333 22272474 12185404 20174141
select(letter.values, mids)
##       mids
## M  8355617
## H  8997941
## E  9928848
## D 10817780
## C 11692739
## B 12185404
letter.values %>% mutate(LV=1:6) %>%
  ggplot(aes(LV, mids))+
  geom_point()+ggtitle("Raw Data")

roots <-sqrt(CFB$NIL)
aplpack::stem.leaf(roots)
## 1 | 2: represents 1200
##  leaf unit: 100
##             n: 55
##    1     f | 4
##    3     s | 77
##    8    1. | 89999
##    9    2* | 0
##   14     t | 33333
##   18     f | 4455
##   26     s | 66666777
##   (4)   2. | 8899
##   25    3* | 000011
##   19     t | 233
##   16     f | 445
##   13     s | 667
##   10    3. | 8999
##    6    4* | 01
##    4     t | 2
##    3     f | 45
##    1     s | 7
(root.lv <-lval(roots))
##   depth       lo       hi     mids  spreads
## M  28.0 2890.608 2890.608 2890.608    0.000
## H  14.5 2409.166 3490.575 2949.871 1081.408
## E   7.5 1989.681 3987.314 2988.498 1997.633
## D   4.0 1819.064 4280.954 3050.009 2461.890
## C   2.5 1786.099 4493.910 3140.005 2707.811
## B   1.0 1448.562 4719.372 3083.967 3270.810
root.lv %>% mutate(LV= 1:6)%>%
  ggplot(aes(LV, mids))+
  geom_point()+ggtitle("Root Data")

logs <-log(CFB$NIL)
aplpack::stem.leaf(logs)
## 1 | 2: represents 1.2
##  leaf unit: 0.1
##             n: 55
##    1      f | 5
##           s | 
##    3    14. | 99
##    8    15* | 01111
##    9      t | 2
##   16      f | 4455555
##   23      s | 6677777
##   (6)   15. | 888899
##   26    16* | 00000011
##   18      t | 222233
##   12      f | 445555
##    6      s | 667
##    3    16. | 889
root.lv %>% mutate(LV= 1:6)%>%
  ggplot(aes(LV, mids))+
  geom_point()+ggtitle("Log Data")

recroots <- -1/sqrt(CFB$NIL)
aplpack::stem.leaf(recroots)
## 1 | 2: represents 0.00012
##  leaf unit: 1e-05
##             n: 55
## LO: -0.000690339612819376
##     3    -5. | 65
##     8    -5* | 42100
##     9    -4. | 8
##    16    -4* | 3322111
##    27    -3. | 99777776655
##   (10)   -3* | 4332222210
##    18    -2. | 999977765555
##     6    -2* | 443221

This data set shows a right-skewed distribution. After applying both square root and logarithmic transformations, the shape becomes more symmetric. The log transformation produces the most balanced distribution.

Cavs/Bulls Points per Game

ppg <- read.csv("C:/Users/KayVog22/Downloads/Creating Data - Cavs_BullsPPG.csv")
head(ppg)
##             Player  PTS
## 1 Donovan Mitchell 24.0
## 2   Darius Garland 20.6
## 3      Evan Mobley 18.5
## 4  De'Andre Hunter 14.3
## 5    Jarrett Allen 13.5
## 6        Ty Jerome 12.5
aplpack::stem.leaf(ppg$PTS, m=3)
## 1 | 2: represents 12
##  leaf unit: 1
##             n: 43
##    10    0 | 1111122233
##    19    0 | 333444566
##   (10)   0 | 6777888899
##    14    1 | 01223
##     9    1 | 344
##     6    1 | 88
##     4    2 | 00
##     2    2 | 44
hist(ppg$PTS)
lines(density(ppg$PTS, bw=1.5), lwd=2)

plot(density(ppg$PTS, bw=1.5),  lwd=2, 
     axes=FALSE, 
     xlab="" ,
     ylab="",
     main="")
box()

par(mfrow=c(2,2))
hist(ppg$PTS, main="Raw")
hist(sqrt(ppg$PTS+.05),main="ROOTS")
hist((ppg$PTS+.05)^0.001, main="p=0.001")

aplpack::stem.leaf(ppg$PTS)
## 1 | 2: represents 12
##  leaf unit: 1
##             n: 43
##    5    0* | 11111
##   13     t | 22233333
##   17     f | 4445
##   (6)    s | 666777
##   20    0. | 888899
##   14    1* | 01
##   12     t | 2233
##    8     f | 44
##          s | 
##    6    1. | 88
##    4    2* | 00
##          t | 
##    2     f | 44
(letter.values<-lval(ppg$PTS))
##   depth   lo   hi   mids spreads
## M  22.0 7.20  7.2  7.200    0.00
## H  11.5 3.65 12.4  8.025    8.75
## E   6.0 2.00 18.5 10.250   16.50
## D   3.5 1.75 20.5 11.125   18.75
## C   2.0 1.70 24.0 12.850   22.30
## B   1.0 1.00 24.0 12.500   23.00
select(letter.values, mids)
##     mids
## M  7.200
## H  8.025
## E 10.250
## D 11.125
## C 12.850
## B 12.500
letter.values %>% mutate(LV=1:6) %>%
  ggplot(aes(LV, mids))+
  geom_point()+ggtitle("Raw Data")

roots<-sqrt(ppg$PTS)
aplpack::stem.leaf(roots)
## 1 | 2: represents 1.2
##  leaf unit: 0.1
##             n: 43
##    7    1* | 0333344
##   13    1. | 578899
##   18    2* | 01134
##   (9)   2. | 566678999
##   16    3* | 0013
##   12    3. | 556678
##    6    4* | 33
##    4    4. | 5588
(root.lv <-lval(roots))
##   depth       lo       hi     mids  spreads
## M  22.0 2.683282 2.683282 2.683282 0.000000
## H  11.5 1.910453 3.521335 2.715894 1.610882
## E   6.0 1.414214 4.301163 2.857688 2.886949
## D   3.5 1.322741 4.527679 2.925210 3.204938
## C   2.0 1.303840 4.898979 3.101410 3.595139
## B   1.0 1.000000 4.898979 2.949490 3.898979
roots<-sqrt(ppg$PTS)
aplpack::stem.leaf(roots)
## 1 | 2: represents 1.2
##  leaf unit: 0.1
##             n: 43
##    7    1* | 0333344
##   13    1. | 578899
##   18    2* | 01134
##   (9)   2. | 566678999
##   16    3* | 0013
##   12    3. | 556678
##    6    4* | 33
##    4    4. | 5588
(root.lv <- (roots))
##  [1] 4.898979 4.538722 4.301163 3.781534 3.674235 3.535534 3.193744 3.065942
##  [9] 2.949576 2.683282 2.683282 2.469818 2.323790 1.923538 1.923538 1.897367
## [17] 1.816590 1.760682 1.581139 1.303840 1.000000 4.898979 4.516636 4.301163
## [25] 3.820995 3.633180 3.507136 3.391165 3.000000 2.932576 2.932576 2.863564
## [33] 2.756810 2.626785 2.549510 2.144761 2.121320 2.073644 1.449138 1.414214
## [41] 1.341641 1.341641 1.303840
roots <- sqrt(ppg$PTS)

root.lv <- lval(roots)

root.lv %>% 
  mutate(LV = 1:6) %>%
  ggplot(aes(LV, mids)) +
  geom_point() +
  ggtitle("Root Data")

logs<-log(lake$Depth)
aplpack::stem.leaf(logs)
## 1 | 2: represents 1.2
##  leaf unit: 0.1
##             n: 71
##    3    1. | 999
##    6    2* | 111
##    9     t | 333
##   11     f | 55
##   18     s | 6666777
##   26    2. | 88888899
##   32    3* | 011111
##   (6)    t | 222223
##   33     f | 444444445555
##   21     s | 66666777
##   13    3. | 8899
##    9    4* | 00001
##    4     t | 222
##    1     f | 4
(logs.lv<-lval(logs))
##   depth       lo       hi     mids   spreads
## M  36.0 3.258097 3.258097 3.258097 0.0000000
## H  18.5 2.802901 3.663562 3.233231 0.8606606
## E   9.5 2.481422 3.959678 3.220550 1.4782558
## D   5.0 2.197225 4.174387 3.185806 1.9771627
## C   3.0 1.945910 4.262680 3.104295 2.3167697
## B   2.0 1.945910 4.262680 3.104295 2.3167697
## A   1.0 1.945910 4.488636 3.217273 2.5427262
logs.lv %>% mutate(LV=1:7) %>%
  ggplot(aes(LV, mids))+
  geom_point()+ggtitle("Log Data")

This data set shows a right-skewed distribution. After applying both square root and logarithmic transformations, the shape becomes more symmetric. The log transformation produces the most balanced distribution.