q1 <- inner_join(customers, orders )
## Joining with `by = join_by(customer_id)`
as.english(nrow(q1))
## [1] four
head(q1)
## # A tibble: 4 × 6
## customer_id name city order_id product amount
## <dbl> <chr> <chr> <dbl> <chr> <dbl>
## 1 1 Alice New York 101 Laptop 1200
## 2 2 Bob Los Angeles 102 Phone 800
## 3 2 Bob Los Angeles 104 Desktop 1500
## 4 3 Charlie Chicago 103 Tablet 300
q2 <- left_join(customers, orders )
## Joining with `by = join_by(customer_id)`
as.english(nrow(q2))
## [1] six
head(q2)
## # A tibble: 6 × 6
## customer_id name city order_id product amount
## <dbl> <chr> <chr> <dbl> <chr> <dbl>
## 1 1 Alice New York 101 Laptop 1200
## 2 2 Bob Los Angeles 102 Phone 800
## 3 2 Bob Los Angeles 104 Desktop 1500
## 4 3 Charlie Chicago 103 Tablet 300
## 5 4 David Houston NA <NA> NA
## 6 5 Eve Phoenix NA <NA> NA
q3 <- right_join(customers, orders )
## Joining with `by = join_by(customer_id)`
as.english(nrow(q3))
## [1] six
head(q3)
## # A tibble: 6 × 6
## customer_id name city order_id product amount
## <dbl> <chr> <chr> <dbl> <chr> <dbl>
## 1 1 Alice New York 101 Laptop 1200
## 2 2 Bob Los Angeles 102 Phone 800
## 3 2 Bob Los Angeles 104 Desktop 1500
## 4 3 Charlie Chicago 103 Tablet 300
## 5 6 <NA> <NA> 105 Camera 600
## 6 7 <NA> <NA> 106 Printer 150
q4 <- full_join(customers, orders )
## Joining with `by = join_by(customer_id)`
as.english(nrow(q4))
## [1] eight
head(q4)
## # A tibble: 6 × 6
## customer_id name city order_id product amount
## <dbl> <chr> <chr> <dbl> <chr> <dbl>
## 1 1 Alice New York 101 Laptop 1200
## 2 2 Bob Los Angeles 102 Phone 800
## 3 2 Bob Los Angeles 104 Desktop 1500
## 4 3 Charlie Chicago 103 Tablet 300
## 5 4 David Houston NA <NA> NA
## 6 5 Eve Phoenix NA <NA> NA
q5 <- semi_join(customers, orders )
## Joining with `by = join_by(customer_id)`
as.english(nrow(q5))
## [1] three
head(q5)
## # A tibble: 3 × 3
## customer_id name city
## <dbl> <chr> <chr>
## 1 1 Alice New York
## 2 2 Bob Los Angeles
## 3 3 Charlie Chicago
q6<- anti_join(customers, orders)
## Joining with `by = join_by(customer_id)`
head(q6)
## # A tibble: 2 × 3
## customer_id name city
## <dbl> <chr> <chr>
## 1 4 David Houston
## 2 5 Eve Phoenix
all_customers <- left_join(customers, orders)
## Joining with `by = join_by(customer_id)`
customers_with_orders <- inner_join(customers, orders)
## Joining with `by = join_by(customer_id)`
head(all_customers)
## # A tibble: 6 × 6
## customer_id name city order_id product amount
## <dbl> <chr> <chr> <dbl> <chr> <dbl>
## 1 1 Alice New York 101 Laptop 1200
## 2 2 Bob Los Angeles 102 Phone 800
## 3 2 Bob Los Angeles 104 Desktop 1500
## 4 3 Charlie Chicago 103 Tablet 300
## 5 4 David Houston NA <NA> NA
## 6 5 Eve Phoenix NA <NA> NA
head(customers_with_orders)
## # A tibble: 4 × 6
## customer_id name city order_id product amount
## <dbl> <chr> <chr> <dbl> <chr> <dbl>
## 1 1 Alice New York 101 Laptop 1200
## 2 2 Bob Los Angeles 102 Phone 800
## 3 2 Bob Los Angeles 104 Desktop 1500
## 4 3 Charlie Chicago 103 Tablet 300
summary_table <- customers %>%
left_join(orders, by = "customer_id") %>%
group_by(name, city) %>%
summarise(
total_orders = n_distinct(order_id, na.rm = TRUE),
total_amount_spent = sum(amount, na.rm = TRUE),
.groups = "drop"
)
summary_table
## # A tibble: 5 × 4
## name city total_orders total_amount_spent
## <chr> <chr> <int> <dbl>
## 1 Alice New York 1 1200
## 2 Bob Los Angeles 2 2300
## 3 Charlie Chicago 1 300
## 4 David Houston 0 0
## 5 Eve Phoenix 0 0