Data Exploration

Exercises ~ Week 2

Logo


1 Exercise 1

The following table shows sample information for three students. Each observation represents a single student and includes details such as their unique student ID, name, age, total credits completed, major field of study, and year level.

This dataset demonstrates a mixture of variable types:

  • Nominal: StudentID, Name, Major
  • Numeric: Age (continuous), CreditsCompleted (discrete)
  • Ordinal: YearLevel (Freshman → Senior)
StudentID Name Age CreditsCompleted Major YearLevel
S001 Alice 20 45 Data Sains Sophomore
S002 Budi 21 60 Mathematics Junior
S003 Citra 19 30 Statistics Freshman
# 1. Create vectors for each variable
StudentID <- c("S001", "S002", "S003")       # Nominal / ID
Name <- c("Alice", "Budi", "Citra")          # Nominal / Name
Age <- c(20, 21, 19)                         # Numeric / Continuous
CreditsCompleted <- c(45, 60, 30)            # Numeric / Discrete

# Nominal
Major <- c("Data Sains", "Mathematics", "Statistics")  

# Ordinal
YearLevel <- factor(c("Sophomore", "Junior", "Freshman"),
                    levels = c("Freshman","Sophomore","Junior","Senior"),
                    ordered = TRUE)          

# 2. Combine all vectors into a data frame
students <- data.frame(
  StudentID, Name, Age, CreditsCompleted, Major, YearLevel,
  stringsAsFactors = FALSE
)

# 3. Display the data frame
print(students)
##   StudentID  Name Age CreditsCompleted       Major YearLevel
## 1      S001 Alice  20               45  Data Sains Sophomore
## 2      S002  Budi  21               60 Mathematics    Junior
## 3      S003 Citra  19               30  Statistics  Freshman

2 Exercise 2

Identify Data Types: Determine the type of data for each of the following variables:

# Install knitr package if not already installed
# install.packages("knitr")
library(knitr)

# Create a data frame for Data Types
variables_info <- data.frame(
  No = 1:5,
  Variable = c(
    "Number of vehicles passing through the toll road each day",
    "Student height in cm",
    "Employee gender (Male / Female)",
    "Customer satisfaction level: Low, Medium, High",
    "Respondent's favorite color: Red, Blue, Green"
  ),
  DataType = c(
    "Quantitative",
    "Quantitative",
    "Quantitative",
    "Qualitative",
    "Qualitative"
  ),
  Subtype = c(
    "Diskrete",
    "Continuous",
    "Nominal",
    "Ordinal",
    "Nominal"
  ),
  stringsAsFactors = FALSE
)

# Display the data frame as a neat table
kable(variables_info, 
      caption = "Table of Variables and Data Types")
Table of Variables and Data Types
No Variable DataType Subtype
1 Number of vehicles passing through the toll road each day Quantitative Diskrete
2 Student height in cm Quantitative Continuous
3 Employee gender (Male / Female) Quantitative Nominal
4 Customer satisfaction level: Low, Medium, High Qualitative Ordinal
5 Respondent’s favorite color: Red, Blue, Green Qualitative Nominal

3 Exercise 3

Classify Data Sources: Determine whether the following data comes from internal or external sources, and whether it is structured or unstructured:

# Install DT package if not already installed
# install.packages("DT") 
library(DT)

# Create a data frame for data sources 
data_sources <- data.frame(
  No = 1:4,
  DataSource = c(
    "Daily sales transaction data of the company",
    "Weather reports from BMKG",
    "Product reviews on social media",
    "Warehouse inventory reports"
  ),
  Internal_External = c(
    "Internal",
    "Eksternal",
    "Eksternal",
    "Internal"
  ),
  Structured_Unstructured = c(
    "Structured",
    "Structured",
    "Unstructured",
    "Structured"
  ),
  stringsAsFactors = FALSE
)

# Display the data frame as a neat table
datatable(data_sources, 
          caption = "Table of Data Sources",
          rownames = FALSE) # hides the index column

4 Exercise 4

Dataset Structure: Consider the following transaction table:

Date Qty Price Product CustomerTier
2025-10-01 2 1000 Laptop High
2025-10-01 5 20 Mouse Medium
2025-10-02 1 1000 Laptop Low
2025-10-02 3 30 Keyboard Medium
2025-10-03 4 50 Mouse Medium
2025-10-03 2 1000 Laptop High
2025-10-04 6 25 Keyboard Low
2025-10-04 1 1000 Laptop High
2025-10-05 3 40 Mouse Low
2025-10-05 5 10 Keyboard Medium

Your Assignment Instructions: Creating a Transactions Table above in R

  1. Create a data frame in R called transactions containing the data above.

  2. Identify which variables are numeric and which are categorical

  3. Calculate total revenue for each transaction by multiplying Qty × Price and add it as a new column Total.

  4. Compute summary statistics:

    • Total quantity sold for each product
    • Total revenue per product
    • Average price per product
  5. Visualize the data:

    • Create a barplot showing total quantity sold per product.
    • Create a pie chart showing the proportion of total revenue per customer tier.
  6. Optional Challenge:

    • Find which date had the highest total revenue.
    • Create a stacked bar chart showing quantity sold per product by customer tier.

Hints: Use data.frame(), aggregate(), barplot(), pie(), and basic arithmetic operations in R.

5 Exercise 5

Create Your Own Data Frame:

Objective: Create a data frame in R with 30 rows containing a mix of data types: continuous, discrete, nominal, and ordinal.

5.1 Instructions

  1. Open RStudio or the R console.

  2. Create a vector for each column in your data frame:

    • Date: 30 dates (can be sequential or random within a month/year)
    • Continuous: numeric values that can take decimal values (e.g., height, weight, temperature)
    • Discrete: numeric values that can only take whole numbers (e.g., number of items, number of vehicles)
    • Nominal: categorical values with no order (e.g., color, gender, city)
    • Ordinal: categorical values with a defined order (e.g., Low, Medium, High; Beginner, Intermediate, Expert)
  3. Combine all vectors into a data frame called my_data.

  4. Check your data frame using head() or View() to ensure it has 30 rows and the columns are correct.

  5. Optional tasks:

    • Summarize each column using summary()
    • Count the frequency of each category for Nominal and Ordinal columns using table()

5.2 Hints

  • Use seq.Date() or as.Date() to generate the Date column.
  • Use runif() or rnorm() for continuous numeric data.
  • Use sample() for discrete, nominal, and ordinal data.
  • Ensure the ordinal vector is created with factor(..., levels = c("Low","Medium","High"), ordered = TRUE) (or similar).
LS0tDQp0aXRsZTogIkRhdGEgRXhwbG9yYXRpb24iICAgICAgICMgTWFpbiB0aXRsZSBvZiB0aGUgZG9jdW1lbnQNCnN1YnRpdGxlOiAiRXhlcmNpc2VzIH4gV2VlayAyIiAgIyBTdWJ0aXRsZSBvciB0b3BpYyBmb3Igd2VlayAyDQphdXRob3I6IA0KLSAiUGFza2FsaXMgRmFyZWxuYXRhIFphbWFzaSINCi0gIk0uIEZpdHJhaCBBaWRpbCBIYXJhaGFwIg0KLSAiSGFuYWZpIE1hbGlrIFJpZmEnaSINCi0gIkRlbiBZdWFuIEZyYXNzZWthIg0KLSAiWmlkaGFuIEFsZmFyZXppIEFmZGkiIyBSZXBsYWNlIHdpdGggeW91ciBmdWxsIG5hbWUNCmRhdGU6ICAiYHIgZm9ybWF0KFN5cy5EYXRlKCksICclQiAlZCwgJVknKWAiICMgQXV0byBkaXNwbGF5cyB0aGUgY3VycmVudCBkYXRlDQpvdXRwdXQ6ICAgICAgICAgICAgICAgICAgICAgICAgICMgT3V0cHV0IHNlY3Rpb24gZGVmaW5lcyB0aGUgZm9ybWF0IGFuZCBsYXlvdXQgDQogIHJtZGZvcm1hdHM6OnJlYWR0aGVkb3duOiAgICAgICMgaHR0cHM6Ly9naXRodWIuY29tL2p1YmEvcm1kZm9ybWF0cw0KICAgIHNlbGZfY29udGFpbmVkOiB0cnVlICAgICAgICAjIEVtYmVkcyBhbGwgcmVzb3VyY2VzIChDU1MsIEpTLCBpbWFnZXMpIA0KICAgIHRodW1ibmFpbHM6IHRydWUgICAgICAgICAgICAjIERpc3BsYXlzIGltYWdlIHRodW1ibmFpbHMgaW4gdGhlIGRvYw0KICAgIGxpZ2h0Ym94OiB0cnVlICAgICAgICAgICAgICAjIEVuYWJsZXMgY2xpY2sgdG8gZW5sYXJnZSBpbWFnZXMNCiAgICBnYWxsZXJ5OiB0cnVlICAgICAgICAgICAgICAgIyBHcm91cHMgaW1hZ2VzIGludG8gYW4gaW50ZXJhY3RpdmUgZ2FsbGVyeQ0KICAgIG51bWJlcl9zZWN0aW9uczogdHJ1ZSAgICAgICAjIEF1dG9tYXRpY2FsbHkgbnVtYmVycyBhbGwgc2VjdGlvbnMNCiAgICBsaWJfZGlyOiBsaWJzICAgICAgICAgICAgICAgIyBEaXJlY3Rvcnkgd2hlcmUgSmF2YVNjcmlwdC9DU1MgbGlicmFyaWVzDQogICAgZGZfcHJpbnQ6ICJwYWdlZCIgICAgICAgICAgICMgRGlzcGxheXMgZGF0YSBmcmFtZXMgYXMgaW50ZXJhY3RpdmUgcGFnZWQgDQogICAgY29kZV9mb2xkaW5nOiAic2hvdyIgICAgICAgICMgQWxsb3dzIGZvbGRpbmcvdW5mb2xkaW5nIFIgY29kZSBibG9ja3MgDQogICAgY29kZV9kb3dubG9hZDogeWVzICAgICAgICAgICMgQWRkcyBhIGJ1dHRvbiB0byBkb3dubG9hZCBhbGwgUiBjb2RlDQotLS0NCg0KDQo8aW1nIGlkPSJGb3RvIiBzcmM9Imh0dHBzOi8vZ2l0aHViLmNvbS9kc2NpZW5jZWxhYnMvaW1hZ2VzL2Jsb2IvbWFzdGVyL0xvZ29fRHNjaWVuY2VsYWJzX3YxLnBuZz9yYXc9dHJ1ZSIgYWx0PSJMb2dvIiBzdHlsZT0id2lkdGg6MjAwcHg7IGRpc3BsYXk6IGJsb2NrOyBtYXJnaW46IGF1dG87Ij4NCg0KLS0tDQoNCiMjIEV4ZXJjaXNlIDENCg0KVGhlIGZvbGxvd2luZyB0YWJsZSBzaG93cyBzYW1wbGUgaW5mb3JtYXRpb24gZm9yIHRocmVlIHN0dWRlbnRzLiBFYWNoIG9ic2VydmF0aW9uIHJlcHJlc2VudHMgYSBzaW5nbGUgc3R1ZGVudCBhbmQgaW5jbHVkZXMgZGV0YWlscyBzdWNoIGFzIHRoZWlyIHVuaXF1ZSBzdHVkZW50IElELCBuYW1lLCBhZ2UsIHRvdGFsIGNyZWRpdHMgY29tcGxldGVkLCBtYWpvciBmaWVsZCBvZiBzdHVkeSwgYW5kIHllYXIgbGV2ZWwuICANCg0KVGhpcyBkYXRhc2V0IGRlbW9uc3RyYXRlcyBhIG1peHR1cmUgb2YgdmFyaWFibGUgdHlwZXM6ICANCg0KLSAqKk5vbWluYWw6KiogU3R1ZGVudElELCBOYW1lLCBNYWpvciAgDQotICoqTnVtZXJpYzoqKiBBZ2UgKGNvbnRpbnVvdXMpLCBDcmVkaXRzQ29tcGxldGVkIChkaXNjcmV0ZSkgIA0KLSAqKk9yZGluYWw6KiogWWVhckxldmVsIChGcmVzaG1hbiDihpIgU2VuaW9yKSAgDQoNCnwgU3R1ZGVudElEIHwgTmFtZSAgIHwgQWdlIHwgQ3JlZGl0c0NvbXBsZXRlZCB8IE1ham9yICAgICAgICAgICAgfCBZZWFyTGV2ZWwgfA0KfC0tLS0tLS0tLS0tfC0tLS0tLS0tfC0tLS0tfC0tLS0tLS0tLS0tLS0tLS0tfC0tLS0tLS0tLS0tLS0tLS0tfC0tLS0tLS0tLS0tfA0KfCBTMDAxICAgICAgfCBBbGljZSAgfCAyMCAgfCA0NSAgICAgICAgICAgICAgfCBEYXRhIFNhaW5zICAgICAgfCBTb3Bob21vcmUgfA0KfCBTMDAyICAgICAgfCBCdWRpICAgfCAyMSAgfCA2MCAgICAgICAgICAgICAgfCBNYXRoZW1hdGljcyAgICAgfCBKdW5pb3IgICAgfA0KfCBTMDAzICAgICAgfCBDaXRyYSAgfCAxOSAgfCAzMCAgICAgICAgICAgICAgfCBTdGF0aXN0aWNzICAgICAgfCBGcmVzaG1hbiAgfA0KDQpgYGB7cn0NCiMgMS4gQ3JlYXRlIHZlY3RvcnMgZm9yIGVhY2ggdmFyaWFibGUNClN0dWRlbnRJRCA8LSBjKCJTMDAxIiwgIlMwMDIiLCAiUzAwMyIpICAgICAgICMgTm9taW5hbCAvIElEDQpOYW1lIDwtIGMoIkFsaWNlIiwgIkJ1ZGkiLCAiQ2l0cmEiKSAgICAgICAgICAjIE5vbWluYWwgLyBOYW1lDQpBZ2UgPC0gYygyMCwgMjEsIDE5KSAgICAgICAgICAgICAgICAgICAgICAgICAjIE51bWVyaWMgLyBDb250aW51b3VzDQpDcmVkaXRzQ29tcGxldGVkIDwtIGMoNDUsIDYwLCAzMCkgICAgICAgICAgICAjIE51bWVyaWMgLyBEaXNjcmV0ZQ0KDQojIE5vbWluYWwNCk1ham9yIDwtIGMoIkRhdGEgU2FpbnMiLCAiTWF0aGVtYXRpY3MiLCAiU3RhdGlzdGljcyIpICANCg0KIyBPcmRpbmFsDQpZZWFyTGV2ZWwgPC0gZmFjdG9yKGMoIlNvcGhvbW9yZSIsICJKdW5pb3IiLCAiRnJlc2htYW4iKSwNCiAgICAgICAgICAgICAgICAgICAgbGV2ZWxzID0gYygiRnJlc2htYW4iLCJTb3Bob21vcmUiLCJKdW5pb3IiLCJTZW5pb3IiKSwNCiAgICAgICAgICAgICAgICAgICAgb3JkZXJlZCA9IFRSVUUpICAgICAgICAgIA0KDQojIDIuIENvbWJpbmUgYWxsIHZlY3RvcnMgaW50byBhIGRhdGEgZnJhbWUNCnN0dWRlbnRzIDwtIGRhdGEuZnJhbWUoDQogIFN0dWRlbnRJRCwgTmFtZSwgQWdlLCBDcmVkaXRzQ29tcGxldGVkLCBNYWpvciwgWWVhckxldmVsLA0KICBzdHJpbmdzQXNGYWN0b3JzID0gRkFMU0UNCikNCg0KIyAzLiBEaXNwbGF5IHRoZSBkYXRhIGZyYW1lDQpwcmludChzdHVkZW50cykNCmBgYA0KDQoNCiMjIEV4ZXJjaXNlIDINCg0KKipJZGVudGlmeSBEYXRhIFR5cGVzOioqIERldGVybWluZSB0aGUgdHlwZSBvZiBkYXRhIGZvciBlYWNoIG9mIHRoZSBmb2xsb3dpbmcgdmFyaWFibGVzOg0KDQpgYGB7cn0NCiMgSW5zdGFsbCBrbml0ciBwYWNrYWdlIGlmIG5vdCBhbHJlYWR5IGluc3RhbGxlZA0KIyBpbnN0YWxsLnBhY2thZ2VzKCJrbml0ciIpDQpsaWJyYXJ5KGtuaXRyKQ0KDQojIENyZWF0ZSBhIGRhdGEgZnJhbWUgZm9yIERhdGEgVHlwZXMNCnZhcmlhYmxlc19pbmZvIDwtIGRhdGEuZnJhbWUoDQogIE5vID0gMTo1LA0KICBWYXJpYWJsZSA9IGMoDQogICAgIk51bWJlciBvZiB2ZWhpY2xlcyBwYXNzaW5nIHRocm91Z2ggdGhlIHRvbGwgcm9hZCBlYWNoIGRheSIsDQogICAgIlN0dWRlbnQgaGVpZ2h0IGluIGNtIiwNCiAgICAiRW1wbG95ZWUgZ2VuZGVyIChNYWxlIC8gRmVtYWxlKSIsDQogICAgIkN1c3RvbWVyIHNhdGlzZmFjdGlvbiBsZXZlbDogTG93LCBNZWRpdW0sIEhpZ2giLA0KICAgICJSZXNwb25kZW50J3MgZmF2b3JpdGUgY29sb3I6IFJlZCwgQmx1ZSwgR3JlZW4iDQogICksDQogIERhdGFUeXBlID0gYygNCiAgICAiUXVhbnRpdGF0aXZlIiwNCiAgICAiUXVhbnRpdGF0aXZlIiwNCiAgICAiUXVhbnRpdGF0aXZlIiwNCiAgICAiUXVhbGl0YXRpdmUiLA0KICAgICJRdWFsaXRhdGl2ZSINCiAgKSwNCiAgU3VidHlwZSA9IGMoDQogICAgIkRpc2tyZXRlIiwNCiAgICAiQ29udGludW91cyIsDQogICAgIk5vbWluYWwiLA0KICAgICJPcmRpbmFsIiwNCiAgICAiTm9taW5hbCINCiAgKSwNCiAgc3RyaW5nc0FzRmFjdG9ycyA9IEZBTFNFDQopDQoNCiMgRGlzcGxheSB0aGUgZGF0YSBmcmFtZSBhcyBhIG5lYXQgdGFibGUNCmthYmxlKHZhcmlhYmxlc19pbmZvLCANCiAgICAgIGNhcHRpb24gPSAiVGFibGUgb2YgVmFyaWFibGVzIGFuZCBEYXRhIFR5cGVzIikNCmBgYA0KLS0tDQoNCiMjIEV4ZXJjaXNlIDMNCg0KKipDbGFzc2lmeSBEYXRhIFNvdXJjZXM6KiogRGV0ZXJtaW5lIHdoZXRoZXIgdGhlIGZvbGxvd2luZyBkYXRhIGNvbWVzIGZyb20gKippbnRlcm5hbCoqIG9yICoqZXh0ZXJuYWwgc291cmNlcyoqLCBhbmQgd2hldGhlciBpdCBpcyAqKnN0cnVjdHVyZWQqKiBvciAqKnVuc3RydWN0dXJlZCoqOg0KDQpgYGB7cn0NCiMgSW5zdGFsbCBEVCBwYWNrYWdlIGlmIG5vdCBhbHJlYWR5IGluc3RhbGxlZA0KIyBpbnN0YWxsLnBhY2thZ2VzKCJEVCIpIA0KbGlicmFyeShEVCkNCg0KIyBDcmVhdGUgYSBkYXRhIGZyYW1lIGZvciBkYXRhIHNvdXJjZXMgDQpkYXRhX3NvdXJjZXMgPC0gZGF0YS5mcmFtZSgNCiAgTm8gPSAxOjQsDQogIERhdGFTb3VyY2UgPSBjKA0KICAgICJEYWlseSBzYWxlcyB0cmFuc2FjdGlvbiBkYXRhIG9mIHRoZSBjb21wYW55IiwNCiAgICAiV2VhdGhlciByZXBvcnRzIGZyb20gQk1LRyIsDQogICAgIlByb2R1Y3QgcmV2aWV3cyBvbiBzb2NpYWwgbWVkaWEiLA0KICAgICJXYXJlaG91c2UgaW52ZW50b3J5IHJlcG9ydHMiDQogICksDQogIEludGVybmFsX0V4dGVybmFsID0gYygNCiAgICAiSW50ZXJuYWwiLA0KICAgICJFa3N0ZXJuYWwiLA0KICAgICJFa3N0ZXJuYWwiLA0KICAgICJJbnRlcm5hbCINCiAgKSwNCiAgU3RydWN0dXJlZF9VbnN0cnVjdHVyZWQgPSBjKA0KICAgICJTdHJ1Y3R1cmVkIiwNCiAgICAiU3RydWN0dXJlZCIsDQogICAgIlVuc3RydWN0dXJlZCIsDQogICAgIlN0cnVjdHVyZWQiDQogICksDQogIHN0cmluZ3NBc0ZhY3RvcnMgPSBGQUxTRQ0KKQ0KDQojIERpc3BsYXkgdGhlIGRhdGEgZnJhbWUgYXMgYSBuZWF0IHRhYmxlDQpkYXRhdGFibGUoZGF0YV9zb3VyY2VzLCANCiAgICAgICAgICBjYXB0aW9uID0gIlRhYmxlIG9mIERhdGEgU291cmNlcyIsDQogICAgICAgICAgcm93bmFtZXMgPSBGQUxTRSkgIyBoaWRlcyB0aGUgaW5kZXggY29sdW1uDQpgYGANCg0KLS0tDQoNCiMjIEV4ZXJjaXNlIDQNCg0KKipEYXRhc2V0IFN0cnVjdHVyZToqKiBDb25zaWRlciB0aGUgZm9sbG93aW5nIHRyYW5zYWN0aW9uIHRhYmxlOg0KDQp8IERhdGUgICAgICAgfCBRdHkgfCBQcmljZSB8IFByb2R1Y3QgIHwgQ3VzdG9tZXJUaWVyIHwNCnwtLS0tLS0tLS0tLS18LS0tLS18LS0tLS0tLXwtLS0tLS0tLS0tfC0tLS0tLS0tLS0tLS0tfA0KfCAyMDI1LTEwLTAxIHwgMiAgIHwgMTAwMCAgfCBMYXB0b3AgICB8IEhpZ2ggICAgICAgICB8DQp8IDIwMjUtMTAtMDEgfCA1ICAgfCAyMCAgICB8IE1vdXNlICAgIHwgTWVkaXVtICAgICAgIHwNCnwgMjAyNS0xMC0wMiB8IDEgICB8IDEwMDAgIHwgTGFwdG9wICAgfCBMb3cgICAgICAgICAgfA0KfCAyMDI1LTEwLTAyIHwgMyAgIHwgMzAgICAgfCBLZXlib2FyZCB8IE1lZGl1bSAgICAgICB8DQp8IDIwMjUtMTAtMDMgfCA0ICAgfCA1MCAgICB8IE1vdXNlICAgIHwgTWVkaXVtICAgICAgIHwNCnwgMjAyNS0xMC0wMyB8IDIgICB8IDEwMDAgIHwgTGFwdG9wICAgfCBIaWdoICAgICAgICAgfA0KfCAyMDI1LTEwLTA0IHwgNiAgIHwgMjUgICAgfCBLZXlib2FyZCB8IExvdyAgICAgICAgICB8DQp8IDIwMjUtMTAtMDQgfCAxICAgfCAxMDAwICB8IExhcHRvcCAgIHwgSGlnaCAgICAgICAgIHwNCnwgMjAyNS0xMC0wNSB8IDMgICB8IDQwICAgIHwgTW91c2UgICAgfCBMb3cgICAgICAgICAgfA0KfCAyMDI1LTEwLTA1IHwgNSAgIHwgMTAgICAgfCBLZXlib2FyZCB8IE1lZGl1bSAgICAgICB8DQoNCg0KKipZb3VyIEFzc2lnbm1lbnQgSW5zdHJ1Y3Rpb25zOioqIENyZWF0aW5nIGEgVHJhbnNhY3Rpb25zIFRhYmxlIGFib3ZlIGluIFINCg0KMS4gKipDcmVhdGUgYSBkYXRhIGZyYW1lKiogaW4gUiBjYWxsZWQgYHRyYW5zYWN0aW9uc2AgY29udGFpbmluZyB0aGUgZGF0YSBhYm92ZS4NCg0KMi4gSWRlbnRpZnkgd2hpY2ggdmFyaWFibGVzIGFyZSBudW1lcmljIGFuZCB3aGljaCBhcmUgY2F0ZWdvcmljYWwNCg0KMy4gKipDYWxjdWxhdGUgdG90YWwgcmV2ZW51ZSoqIGZvciBlYWNoIHRyYW5zYWN0aW9uIGJ5IG11bHRpcGx5aW5nIGBRdHkgw5cgUHJpY2VgIGFuZCBhZGQgaXQgYXMgYSBuZXcgY29sdW1uIGBUb3RhbGAuDQoNCjQuICoqQ29tcHV0ZSBzdW1tYXJ5IHN0YXRpc3RpY3MqKjoNCiAgIC0gVG90YWwgcXVhbnRpdHkgc29sZCBmb3IgZWFjaCBwcm9kdWN0DQogICAtIFRvdGFsIHJldmVudWUgcGVyIHByb2R1Y3QNCiAgIC0gQXZlcmFnZSBwcmljZSBwZXIgcHJvZHVjdA0KDQo1LiAqKlZpc3VhbGl6ZSB0aGUgZGF0YSoqOg0KICAgLSBDcmVhdGUgYSAqKmJhcnBsb3QqKiBzaG93aW5nIHRvdGFsIHF1YW50aXR5IHNvbGQgcGVyIHByb2R1Y3QuDQogICAtIENyZWF0ZSBhICoqcGllIGNoYXJ0Kiogc2hvd2luZyB0aGUgcHJvcG9ydGlvbiBvZiB0b3RhbCByZXZlbnVlIHBlciBjdXN0b21lciB0aWVyLg0KDQo2LiAqKk9wdGlvbmFsIENoYWxsZW5nZSoqOg0KICAgLSBGaW5kIHdoaWNoICoqZGF0ZSoqIGhhZCB0aGUgaGlnaGVzdCB0b3RhbCByZXZlbnVlLg0KICAgLSBDcmVhdGUgYSAqKnN0YWNrZWQgYmFyIGNoYXJ0Kiogc2hvd2luZyBxdWFudGl0eSBzb2xkIHBlciBwcm9kdWN0IGJ5IGN1c3RvbWVyIHRpZXIuDQoNCioqSGludHM6KiogVXNlIGBkYXRhLmZyYW1lKClgLCBgYWdncmVnYXRlKClgLCBgYmFycGxvdCgpYCwgYHBpZSgpYCwgYW5kIGJhc2ljIGFyaXRobWV0aWMgb3BlcmF0aW9ucyBpbiBSLg0KDQoNCiMjIEV4ZXJjaXNlIDUNCg0KKipDcmVhdGUgWW91ciBPd24gRGF0YSBGcmFtZToqKg0KDQoqKk9iamVjdGl2ZToqKiBDcmVhdGUgYSBkYXRhIGZyYW1lIGluIFIgd2l0aCAqKjMwIHJvd3MqKiBjb250YWluaW5nIGEgbWl4IG9mIGRhdGEgdHlwZXM6IGNvbnRpbnVvdXMsIGRpc2NyZXRlLCBub21pbmFsLCBhbmQgb3JkaW5hbC4gIA0KDQojIyMgSW5zdHJ1Y3Rpb25zDQoNCjEuICoqT3BlbiBSU3R1ZGlvKiogb3IgdGhlIFIgY29uc29sZS4gIA0KDQoyLiAqKkNyZWF0ZSBhIHZlY3RvciBmb3IgZWFjaCBjb2x1bW4qKiBpbiB5b3VyIGRhdGEgZnJhbWU6ICANCg0KICAgLSAqKkRhdGUqKjogMzAgZGF0ZXMgKGNhbiBiZSBzZXF1ZW50aWFsIG9yIHJhbmRvbSB3aXRoaW4gYSBtb250aC95ZWFyKSAgDQogICAtICoqQ29udGludW91cyoqOiBudW1lcmljIHZhbHVlcyB0aGF0IGNhbiB0YWtlIGRlY2ltYWwgdmFsdWVzIChlLmcuLCBoZWlnaHQsIHdlaWdodCwgdGVtcGVyYXR1cmUpICANCiAgIC0gKipEaXNjcmV0ZSoqOiBudW1lcmljIHZhbHVlcyB0aGF0IGNhbiBvbmx5IHRha2Ugd2hvbGUgbnVtYmVycyAoZS5nLiwgbnVtYmVyIG9mIGl0ZW1zLCBudW1iZXIgb2YgdmVoaWNsZXMpICANCiAgIC0gKipOb21pbmFsKio6IGNhdGVnb3JpY2FsIHZhbHVlcyB3aXRoICoqbm8gb3JkZXIqKiAoZS5nLiwgY29sb3IsIGdlbmRlciwgY2l0eSkgIA0KICAgLSAqKk9yZGluYWwqKjogY2F0ZWdvcmljYWwgdmFsdWVzIHdpdGggYSAqKmRlZmluZWQgb3JkZXIqKiAoZS5nLiwgTG93LCBNZWRpdW0sIEhpZ2g7IEJlZ2lubmVyLCBJbnRlcm1lZGlhdGUsIEV4cGVydCkgIA0KDQozLiAqKkNvbWJpbmUgYWxsIHZlY3RvcnMgaW50byBhIGRhdGEgZnJhbWUqKiBjYWxsZWQgYG15X2RhdGFgLiAgDQoNCjQuICoqQ2hlY2sgeW91ciBkYXRhIGZyYW1lKiogdXNpbmcgYGhlYWQoKWAgb3IgYFZpZXcoKWAgdG8gZW5zdXJlIGl0IGhhcyAqKjMwIHJvd3MqKiBhbmQgdGhlIGNvbHVtbnMgYXJlIGNvcnJlY3QuICANCg0KNS4gKipPcHRpb25hbCB0YXNrcyoqOiAgDQogICAtIFN1bW1hcml6ZSBlYWNoIGNvbHVtbiB1c2luZyBgc3VtbWFyeSgpYCAgDQogICAtIENvdW50IHRoZSBmcmVxdWVuY3kgb2YgZWFjaCBjYXRlZ29yeSBmb3IgKipOb21pbmFsKiogYW5kICoqT3JkaW5hbCoqIGNvbHVtbnMgdXNpbmcgYHRhYmxlKClgICANCg0KIyMjIEhpbnRzDQoNCi0gVXNlIGBzZXEuRGF0ZSgpYCBvciBgYXMuRGF0ZSgpYCB0byBnZW5lcmF0ZSB0aGUgRGF0ZSBjb2x1bW4uICANCi0gVXNlIGBydW5pZigpYCBvciBgcm5vcm0oKWAgZm9yIGNvbnRpbnVvdXMgbnVtZXJpYyBkYXRhLiAgDQotIFVzZSBgc2FtcGxlKClgIGZvciBkaXNjcmV0ZSwgbm9taW5hbCwgYW5kIG9yZGluYWwgZGF0YS4gIA0KLSBFbnN1cmUgdGhlICoqb3JkaW5hbCB2ZWN0b3IqKiBpcyBjcmVhdGVkIHdpdGggYGZhY3RvciguLi4sIGxldmVscyA9IGMoIkxvdyIsIk1lZGl1bSIsIkhpZ2giKSwgb3JkZXJlZCA9IFRSVUUpYCAob3Igc2ltaWxhcikuICANCg0KDQoNCg0KDQo=