library(tidyverse)
library(openintro)
 
Exercise 1
veri setini inceleme glimpse fonksiyonu ile yapılabilir
ornek resim
 
veri setindeki kızlar
##  [1] 4683 4457 4102 4590 4839 4820 4928 4605 4457 4952 4784 5332 5200 4910 4617
## [16] 3997 3919 3395 3536 3181 2746 2722 2840 2908 2959 3179 3349 3382 3289 3013
## [31] 2781 3247 4107 4803 4881 5681 4858 4319 5322 5560 5829 5719 6061 6120 5822
## [46] 5738 5717 5847 6203 6033 6041 6299 6533 6744 7158 7127 7246 7119 7214 7101
## [61] 7167 7302 7392 7316 7483 6647 6713 7229 7767 7626 7452 7061 7514 7656 7683
## [76] 5738 7779 7417 7687 7623 7380 7288
 
Exercise 2
Kızların değişim trendi aşağıdaki gibidir.
ggplot(data = arbuthnot, aes(x = year, y = girls)) +
  geom_line() +
  theme_bw() +
  labs(title = "Kizlarin Dagilimi",
       x="kiz sayisi",
       y="yillar")
 

toplam sayi
arbuthnot$boys + arbuthnot$girls
 
##  [1]  9901  9315  8524  9584  9997  9855 10034  9522  9160 10311 10150 10850
## [13] 10670 10370  9410  8104  7966  7163  7332  6544  5825  5612  6071  6128
## [25]  6155  6620  7004  7050  6685  6170  5990  6971  8855 10019 10292 11722
## [37]  9972  8997 10938 11633 12335 11997 12510 12563 11895 11851 11775 12399
## [49] 12626 12601 12288 12847 13355 13653 14735 14702 14730 14694 14951 14588
## [61] 14771 15211 15054 14918 15159 13632 13976 14861 15829 16052 15363 14639
## [73] 15616 15687 15448 11851 16145 15369 16066 15862 15220 14928
mutate fonksiyonu ile yeni degisken ekleme
arbuthnot <- arbuthnot %>%
  mutate(total = boys + girls)
 
Erkek kiz oranı ekleme
arbuthnot <- arbuthnot %>%
  mutate(boy_to_girl_ratio = boys / girls)
 
 
Exercise 3
Insert any text here.
library(ggplot2)
ggplot(arbuthnot, aes(x=year, y=boys)) +
  geom_line()
 

Erkeklerin kizlardan fazla olmasi
arbuthnot <- arbuthnot %>%
  mutate(more_boys = boys > girls)
arbuthnot <- arbuthnot %>%
  mutate(more_boys_numeric = as.numeric(boys > girls))
 
ozet verme/betimsel istatistik
arbuthnot %>%
  summarize(min = min(boys),
            max = max(boys)
            )
 
## # A tibble: 1 × 2
##     min   max
##   <int> <int>
## 1  2890  8426
 
Exercise 4
Insert any text here. # Insert code for Exercise 4 here
## Warning: Unknown or uninitialised column: `yil`.
## NULL
## [1] 82  7
## [1] 82
## [1] 7
colnames(arbuthnot) <- c("yil","erkek","kiz","toplam","erkek/kiz","cok_erkek","cok_erkek_sayisal")
#sutun yeri degişir ?relocate
arbuthnot_v2<- arbuthnot %>% select(1:3,7,6,5)
 
 
Exercise 5
Insert any text here.
# Insert code for Exercise 5 here
 
 
Exercise 6
Insert any text here.
# Insert code for Exercise 6 here
library(ggplot2)
ggplot(data = arbuthnot, aes(x = yil, y = erkek/kiz)) + 
  geom_line() +
  xlim(c(1610,1720))
 

#limitlerin artış miktarını değiştiriniz
 
 
Exercise 7
Insert any text here.
# Inser
arbuthnot %>% arrange(-toplam)
 
## # A tibble: 82 × 7
##      yil erkek   kiz toplam `erkek/kiz` cok_erkek cok_erkek_sayisal
##    <int> <int> <int>  <int>       <dbl> <lgl>                 <dbl>
##  1  1705  8366  7779  16145        1.08 TRUE                      1
##  2  1707  8379  7687  16066        1.09 TRUE                      1
##  3  1698  8426  7626  16052        1.10 TRUE                      1
##  4  1708  8239  7623  15862        1.08 TRUE                      1
##  5  1697  8062  7767  15829        1.04 TRUE                      1
##  6  1702  8031  7656  15687        1.05 TRUE                      1
##  7  1701  8102  7514  15616        1.08 TRUE                      1
##  8  1703  7765  7683  15448        1.01 TRUE                      1
##  9  1706  7952  7417  15369        1.07 TRUE                      1
## 10  1699  7911  7452  15363        1.06 TRUE                      1
## # ℹ 72 more rows
#arbuthnot %>% arrange(desc(toplam))#
 
 
LS0tDQp0aXRsZTogIkxhYiAxOiBJbnRybyB0byBSIg0KYXV0aG9yOiAiQXV0aG9yIE5hbWUiDQpkYXRlOiAiYHIgU3lzLkRhdGUoKWAiDQpvdXRwdXQ6IG9wZW5pbnRybzo6bGFiX3JlcG9ydA0KLS0tDQoNCmBgYHtyIGxvYWQtcGFja2FnZXMsIGVjaG89VFJVRSwgbWVzc2FnZT1GQUxTRX0NCmxpYnJhcnkodGlkeXZlcnNlKQ0KbGlicmFyeShvcGVuaW50cm8pDQpgYGANCg0KIyMjIEV4ZXJjaXNlIDENCg0KKip2ZXJpIHNldGluaSBpbmNlbGVtZSBgZ2xpbXBzZWAgZm9ua3NpeW9udSBpbGUgW3lhcMSxbGFiaWxpcl0od3d3dy5zZXNlLmNvbSkqKg0KDQp8IENvbDEgfCBDb2wyIHwgQ29sMyB8DQp8LS0tLS0tfC0tLS0tLXwtLS0tLS18DQp8ICAgICAgfCAgICAgIHwgICAgICB8DQp8ICAgICAgfCAgICAgIHwgICAgICB8DQp8ICAgICAgfCAgICAgIHwgICAgICB8DQoNCjogVGFibG8NCg0KIVtvcm5layByZXNpbV0oaW1hZ2VzL0VrcmFuJTIwR8O2csO8bnTDvHPDvCUyMCg0KS5wbmcpDQoNCnZlcmkgc2V0aW5kZWtpIGvEsXpsYXINCg0KYGBge3Igdmlldy1naXJscy1jb3VudHN9DQphcmJ1dGhub3QkZ2lybHMNCmBgYA0KDQojIyMgRXhlcmNpc2UgMg0KDQpLxLF6bGFyxLFuIGRlxJ9pxZ9pbSB0cmVuZGkgYcWfYcSfxLFkYWtpIGdpYmlkaXIuDQoNCmBgYHtyIHRyZW5kLWdpcmxzfQ0KZ2dwbG90KGRhdGEgPSBhcmJ1dGhub3QsIGFlcyh4ID0geWVhciwgeSA9IGdpcmxzKSkgKw0KICBnZW9tX2xpbmUoKSArDQogIHRoZW1lX2J3KCkgKw0KICBsYWJzKHRpdGxlID0gIktpemxhcmluIERhZ2lsaW1pIiwNCiAgICAgICB4PSJraXogc2F5aXNpIiwNCiAgICAgICB5PSJ5aWxsYXIiKQ0KYGBgDQoNCnRvcGxhbSBzYXlpDQoNCmBgYHtyfQ0KYXJidXRobm90JGJveXMgKyBhcmJ1dGhub3QkZ2lybHMNCmBgYA0KDQpgbXV0YXRlYCBmb25rc2l5b251IGlsZSB5ZW5pIGRlZ2lza2VuIGVrbGVtZQ0KDQpgYGB7cn0NCmFyYnV0aG5vdCA8LSBhcmJ1dGhub3QgJT4lDQogIG11dGF0ZSh0b3RhbCA9IGJveXMgKyBnaXJscykNCmBgYA0KDQpFcmtlayBraXogb3JhbsSxIGVrbGVtZQ0KDQpgYGB7cn0NCmFyYnV0aG5vdCA8LSBhcmJ1dGhub3QgJT4lDQogIG11dGF0ZShib3lfdG9fZ2lybF9yYXRpbyA9IGJveXMgLyBnaXJscykNCmBgYA0KDQojIyMgRXhlcmNpc2UgMw0KDQpJbnNlcnQgYW55IHRleHQgaGVyZS4NCg0KYGBge3IgcGxvdC1wcm9wLWJveXMtYXJidXRobm90fQ0KbGlicmFyeShnZ3Bsb3QyKQ0KZ2dwbG90KGFyYnV0aG5vdCwgYWVzKHg9eWVhciwgeT1ib3lzKSkgKw0KICBnZW9tX2xpbmUoKQ0KDQpgYGANCg0KRXJrZWtsZXJpbiBraXpsYXJkYW4gZmF6bGEgb2xtYXNpDQoNCmBgYHtyfQ0KYXJidXRobm90IDwtIGFyYnV0aG5vdCAlPiUNCiAgbXV0YXRlKG1vcmVfYm95cyA9IGJveXMgPiBnaXJscykNCg0KYXJidXRobm90IDwtIGFyYnV0aG5vdCAlPiUNCiAgbXV0YXRlKG1vcmVfYm95c19udW1lcmljID0gYXMubnVtZXJpYyhib3lzID4gZ2lybHMpKQ0KYGBgDQoNCm96ZXQgdmVybWUvYmV0aW1zZWwgaXN0YXRpc3Rpaw0KDQpgYGB7cn0NCmFyYnV0aG5vdCAlPiUNCiAgc3VtbWFyaXplKG1pbiA9IG1pbihib3lzKSwNCiAgICAgICAgICAgIG1heCA9IG1heChib3lzKQ0KICAgICAgICAgICAgKQ0KYGBgDQoNCiMjIyBFeGVyY2lzZSA0DQoNCkluc2VydCBhbnkgdGV4dCBoZXJlLiBcIyBJbnNlcnQgY29kZSBmb3IgRXhlcmNpc2UgNCBoZXJlDQoNCmBgYHtyIGRpbS1wcmVzZW50fQ0KYXJidXRobm90JHlpbA0KDQpkaW0oYXJidXRobm90KQ0KDQpucm93KGFyYnV0aG5vdCkNCg0KbmNvbChhcmJ1dGhub3QpDQoNCmNvbG5hbWVzKGFyYnV0aG5vdCkgPC0gYygieWlsIiwiZXJrZWsiLCJraXoiLCJ0b3BsYW0iLCJlcmtlay9raXoiLCJjb2tfZXJrZWsiLCJjb2tfZXJrZWtfc2F5aXNhbCIpDQoNCiNzdXR1biB5ZXJpIGRlZ2nFn2lyID9yZWxvY2F0ZQ0KDQphcmJ1dGhub3RfdjI8LSBhcmJ1dGhub3QgJT4lIHNlbGVjdCgxOjMsNyw2LDUpDQpgYGANCg0KIyMjIEV4ZXJjaXNlIDUNCg0KSW5zZXJ0IGFueSB0ZXh0IGhlcmUuDQoNCmBgYHtyIGNvdW50LWNvbXBhcmV9DQoNCiMgSW5zZXJ0IGNvZGUgZm9yIEV4ZXJjaXNlIDUgaGVyZQ0KYGBgDQoNCiMjIyBFeGVyY2lzZSA2DQoNCkluc2VydCBhbnkgdGV4dCBoZXJlLg0KDQpgYGB7ciBwbG90LXByb3AtYm95cy1wcmVzZW50fQ0KIyBJbnNlcnQgY29kZSBmb3IgRXhlcmNpc2UgNiBoZXJlDQpsaWJyYXJ5KGdncGxvdDIpDQpnZ3Bsb3QoZGF0YSA9IGFyYnV0aG5vdCwgYWVzKHggPSB5aWwsIHkgPSBlcmtlay9raXopKSArIA0KICBnZW9tX2xpbmUoKSArDQogIHhsaW0oYygxNjEwLDE3MjApKQ0KI2xpbWl0bGVyaW4gYXJ0xLHFnyBtaWt0YXLEsW7EsSBkZcSfacWfdGlyaW5peg0KDQoNCmBgYA0KDQojIyMgRXhlcmNpc2UgNw0KDQpJbnNlcnQgYW55IHRleHQgaGVyZS4NCg0KYGBge3IgZmluZC1tYXgtdG90YWx9DQojIEluc2VyDQphcmJ1dGhub3QgJT4lIGFycmFuZ2UoLXRvcGxhbSkNCg0KI2FyYnV0aG5vdCAlPiUgYXJyYW5nZShkZXNjKHRvcGxhbSkpIw0KDQpgYGANCg==