library(tidyverse)
library(openintro)

Exercise 1

Veri setini inceleme işlemi glimpsefonksiyonu ile yapılabilir.

glimpse(arbuthnot)
## Rows: 82
## Columns: 3
## $ year  <int> 1629, 1630, 1631, 1632, 1633, 1634, 1635, 1636, 1637, 1638, 1639…
## $ boys  <int> 5218, 4858, 4422, 4994, 5158, 5035, 5106, 4917, 4703, 5359, 5366…
## $ girls <int> 4683, 4457, 4102, 4590, 4839, 4820, 4928, 4605, 4457, 4952, 4784…

Veri setindeki kız sayıları

arbuthnot$girls
##  [1] 4683 4457 4102 4590 4839 4820 4928 4605 4457 4952 4784 5332 5200 4910 4617
## [16] 3997 3919 3395 3536 3181 2746 2722 2840 2908 2959 3179 3349 3382 3289 3013
## [31] 2781 3247 4107 4803 4881 5681 4858 4319 5322 5560 5829 5719 6061 6120 5822
## [46] 5738 5717 5847 6203 6033 6041 6299 6533 6744 7158 7127 7246 7119 7214 7101
## [61] 7167 7302 7392 7316 7483 6647 6713 7229 7767 7626 7452 7061 7514 7656 7683
## [76] 5738 7779 7417 7687 7623 7380 7288

Exercise 2

Kızların değişim trendi aşağıdaki gibidir.

# Insert code for Exercise 2 here
ggplot(data = arbuthnot, aes(x = year, y = girls)) +
  geom_line()+
  theme_minimal()+
  labs(title = "Kızların Değişim Trendi",
       x="Kız Sayıları",
       y="Yıllar")

mutate fonksiyonu ile yeni değişken ekleme

arbuthnot <- arbuthnot %>%
  mutate(total = boys + girls)

Erkek kız oranı ekleme

ggplot(data = arbuthnot, aes(x = year, y = total)) + 
  geom_line()

Exercise 3

Erkeklerin değişim trendi aşağıdaki gibidir.

# Insert code for Exercise 3 here
ggplot(arbuthnot, aes(x = year, y = boys)) +
  geom_line() +
  theme_minimal() +
  labs (title = "Erkeklerin yıllara göre sayıları",
        x = "Yıl",
        y = "Erkekler")

Erkeklerin, kızlardan fazla olduğu yıllar

arbuthnot <- arbuthnot %>%
  mutate(more_boys = boys > girls)

arbuthnot <- arbuthnot %>%
  mutate(more_boys_numeric = as.numeric(boys > girls))

Minimum ve maksimum erkeklerin özeti

arbuthnot %>%
  summarize(min = min(boys),
            max = max(boys))
## # A tibble: 1 × 2
##     min   max
##   <int> <int>
## 1  2890  8426

Exercise 4

What years are included in this data set? What are the dimensions of the data frame? What are the variable (column) names?

# Insert code for Exercise 4 here

arbuthnot$year
##  [1] 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
## [16] 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
## [31] 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
## [46] 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
## [61] 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
## [76] 1704 1705 1706 1707 1708 1709 1710
dim(arbuthnot)
## [1] 82  6
nrow(arbuthnot)
## [1] 82
#colnames(arbuthnot) <- c("Yıl", "Erkek", "Kız", "Toplam", "cok_erkek", "cok_erkek_sayısal")

Exercise 5

Insert any text here.

# Insert code for Exercise 5 here

Exercise 6

Insert any text here.

# Insert code for Exercise 6 here

#yıl aralıklarını 20 yıllık gözüküyor onu 10 yıllık periyotlara nasıl çeviririz.

Exercise 7

Insert any text here.

# Insert code for Exercise 7 here
arbuthnot %>% arrange(desc(total))
## # A tibble: 82 × 6
##     year  boys girls total more_boys more_boys_numeric
##    <int> <int> <int> <int> <lgl>                 <dbl>
##  1  1705  8366  7779 16145 TRUE                      1
##  2  1707  8379  7687 16066 TRUE                      1
##  3  1698  8426  7626 16052 TRUE                      1
##  4  1708  8239  7623 15862 TRUE                      1
##  5  1697  8062  7767 15829 TRUE                      1
##  6  1702  8031  7656 15687 TRUE                      1
##  7  1701  8102  7514 15616 TRUE                      1
##  8  1703  7765  7683 15448 TRUE                      1
##  9  1706  7952  7417 15369 TRUE                      1
## 10  1699  7911  7452 15363 TRUE                      1
## # ℹ 72 more rows

#ekstra egzersizler yapacağız, R markdown’da öğrendiklerimizi ekleyeceğiz.

LS0tCnRpdGxlOiAiTGFiIDE6IEludHJvIHRvIFIiCmF1dGhvcjogIk1lbHRlbSBBdGFzb3kiCmRhdGU6ICJgciBTeXMuRGF0ZSgpYCIKb3V0cHV0OiBvcGVuaW50cm86OmxhYl9yZXBvcnQKLS0tCgpgYGB7ciBsb2FkLXBhY2thZ2VzLCBlY2hvPVRSVUUsIG1lc3NhZ2U9RkFMU0V9CmxpYnJhcnkodGlkeXZlcnNlKQpsaWJyYXJ5KG9wZW5pbnRybykKYGBgCgojIyMgRXhlcmNpc2UgMQoKVmVyaSAqc2V0aW5pKiAqKmluY2VsZW1lIGnFn2xlbWkgYGdsaW1wc2VgW2ZvbmtzaXlvbnVdKGh0dHBzOi8vYXRhbGF5LWsuZ2l0aHViLmlvLzIwMjZfT0xDNzMxL2hhZnRhbGFyLykgaWxlIHlhcMSxbGFiaWxpci4qKgoKYGBge3IgZ2xpbXBzZS1hcmJ1dGhub3R9CmdsaW1wc2UoYXJidXRobm90KQpgYGAKClZlcmkgKnNldGluZGVraSogKiprxLF6IHNhecSxbGFyxLEqKgoKYGBge3Igdmlldy1naXJscy1jb3VudHN9CmFyYnV0aG5vdCRnaXJscwpgYGAKCiMjIyBFeGVyY2lzZSAyCgpLxLF6bGFyxLFuIGRlxJ9pxZ9pbSB0cmVuZGkgYcWfYcSfxLFkYWtpIGdpYmlkaXIuCgpgYGB7ciB0cmVuZC1naXJsc30KIyBJbnNlcnQgY29kZSBmb3IgRXhlcmNpc2UgMiBoZXJlCmdncGxvdChkYXRhID0gYXJidXRobm90LCBhZXMoeCA9IHllYXIsIHkgPSBnaXJscykpICsKICBnZW9tX2xpbmUoKSsKICB0aGVtZV9taW5pbWFsKCkrCiAgbGFicyh0aXRsZSA9ICJLxLF6bGFyxLFuIERlxJ9pxZ9pbSBUcmVuZGkiLAogICAgICAgeD0iS8SxeiBTYXnEsWxhcsSxIiwKICAgICAgIHk9IlnEsWxsYXIiKQpgYGAKCmBtdXRhdGVgIGZvbmtzaXlvbnUgaWxlIHllbmkgZGXEn2nFn2tlbiBla2xlbWUKCmBgYHtyfQphcmJ1dGhub3QgPC0gYXJidXRobm90ICU+JQogIG11dGF0ZSh0b3RhbCA9IGJveXMgKyBnaXJscykKYGBgCgpFcmtlayBrxLF6IG9yYW7EsSBla2xlbWUKCmBgYHtyfQpnZ3Bsb3QoZGF0YSA9IGFyYnV0aG5vdCwgYWVzKHggPSB5ZWFyLCB5ID0gdG90YWwpKSArIAogIGdlb21fbGluZSgpCmBgYAoKIyMjIEV4ZXJjaXNlIDMKCkVya2VrbGVyaW4gZGXEn2nFn2ltIHRyZW5kaSBhxZ9hxJ/EsWRha2kgZ2liaWRpci4KCmBgYHtyIHBsb3QtcHJvcC1ib3lzLWFyYnV0aG5vdH0KIyBJbnNlcnQgY29kZSBmb3IgRXhlcmNpc2UgMyBoZXJlCmdncGxvdChhcmJ1dGhub3QsIGFlcyh4ID0geWVhciwgeSA9IGJveXMpKSArCiAgZ2VvbV9saW5lKCkgKwogIHRoZW1lX21pbmltYWwoKSArCiAgbGFicyAodGl0bGUgPSAiRXJrZWtsZXJpbiB5xLFsbGFyYSBnw7ZyZSBzYXnEsWxhcsSxIiwKICAgICAgICB4ID0gIlnEsWwiLAogICAgICAgIHkgPSAiRXJrZWtsZXIiKQpgYGAKCkVya2VrbGVyaW4sIGvEsXpsYXJkYW4gZmF6bGEgb2xkdcSfdSB5xLFsbGFyCgpgYGB7cn0KYXJidXRobm90IDwtIGFyYnV0aG5vdCAlPiUKICBtdXRhdGUobW9yZV9ib3lzID0gYm95cyA+IGdpcmxzKQoKYXJidXRobm90IDwtIGFyYnV0aG5vdCAlPiUKICBtdXRhdGUobW9yZV9ib3lzX251bWVyaWMgPSBhcy5udW1lcmljKGJveXMgPiBnaXJscykpCmBgYAoKTWluaW11bSB2ZSBtYWtzaW11bSBlcmtla2xlcmluIMO2emV0aQoKYGBge3J9CmFyYnV0aG5vdCAlPiUKICBzdW1tYXJpemUobWluID0gbWluKGJveXMpLAogICAgICAgICAgICBtYXggPSBtYXgoYm95cykpCmBgYAoKIyMjIEV4ZXJjaXNlIDQKCldoYXQgeWVhcnMgYXJlIGluY2x1ZGVkIGluIHRoaXMgZGF0YSBzZXQ/IFdoYXQgYXJlIHRoZSBkaW1lbnNpb25zIG9mIHRoZSBkYXRhIGZyYW1lPyBXaGF0IGFyZSB0aGUgdmFyaWFibGUgKGNvbHVtbikgbmFtZXM/CgpgYGB7ciBkaW0gcHJlc2VudH0KIyBJbnNlcnQgY29kZSBmb3IgRXhlcmNpc2UgNCBoZXJlCgphcmJ1dGhub3QkeWVhcgoKZGltKGFyYnV0aG5vdCkKCm5yb3coYXJidXRobm90KQoKI2NvbG5hbWVzKGFyYnV0aG5vdCkgPC0gYygiWcSxbCIsICJFcmtlayIsICJLxLF6IiwgIlRvcGxhbSIsICJjb2tfZXJrZWsiLCAiY29rX2Vya2VrX3NhecSxc2FsIikKCmBgYAoKIyMjIEV4ZXJjaXNlIDUKCkluc2VydCBhbnkgdGV4dCBoZXJlLgoKYGBge3IgY291bnQtY29tcGFyZX0KIyBJbnNlcnQgY29kZSBmb3IgRXhlcmNpc2UgNSBoZXJlCmBgYAoKIyMjIEV4ZXJjaXNlIDYKCkluc2VydCBhbnkgdGV4dCBoZXJlLgoKYGBge3IgcGxvdC1wcm9wLWJveXMtcHJlc2VudH0KIyBJbnNlcnQgY29kZSBmb3IgRXhlcmNpc2UgNiBoZXJlCmBgYAoKI3nEsWwgYXJhbMSxa2xhcsSxbsSxIDIwIHnEsWxsxLFrIGfDtnrDvGvDvHlvciBvbnUgMTAgecSxbGzEsWsgcGVyaXlvdGxhcmEgbmFzxLFsIMOnZXZpcmlyaXouCgojIyMgRXhlcmNpc2UgNwoKSW5zZXJ0IGFueSB0ZXh0IGhlcmUuCgpgYGB7ciBmaW5kLW1heC10b3RhbH0KIyBJbnNlcnQgY29kZSBmb3IgRXhlcmNpc2UgNyBoZXJlCmFyYnV0aG5vdCAlPiUgYXJyYW5nZShkZXNjKHRvdGFsKSkKYGBgCgoKCgojZWtzdHJhIGVnemVyc2l6bGVyIHlhcGFjYcSfxLF6LCBSIG1hcmtkb3duJ2RhIMO2xJ9yZW5kaWtsZXJpbWl6aSBla2xleWVjZcSfaXouIAoK