df_mahasiswa <- read.csv("df_mahasiswa.csv")
df_mahasiswa
##     X id_mahasiswa jenis_kelamin jam_belajar_per_hari frekuensi_login_lms
## 1   1       MHS001             L                    4                   1
## 2   2       MHS002             P                    4                   2
## 3   3       MHS003             P                    2                   6
## 4   4       MHS004             P                    5                   3
## 5   5       MHS005             L                    3                   2
## 6   6       MHS006             L                    3                   7
## 7   7       MHS007             P                    1                   7
## 8   8       MHS008             L                    3                   4
## 9   9       MHS009             P                    2                   6
## 10 10       MHS010             L                    1                   5
## 11 11       MHS011             L                    1                   1
## 12 12       MHS012             P                    1                   2
## 13 13       MHS013             P                    2                   6
## 14 14       MHS014             L                    4                   2
## 15 15       MHS015             L                    1                   2
## 16 16       MHS016             L                    5                   1
## 17 17       MHS017             L                    2                   7
## 18 18       MHS018             L                    5                   7
## 19 19       MHS019             L                    5                   2
## 20 20       MHS020             L                    3                   1
## 21 21       MHS021             L                    1                   6
## 22 22       MHS022             P                    4                   7
## 23 23       MHS023             L                    4                   4
## 24 24       MHS024             P                    5                   4
## 25 25       MHS025             L                    3                   1
## 26 26       MHS026             L                    4                   6
## 27 27       MHS027             L                    2                   3
## 28 28       MHS028             P                    2                   6
## 29 29       MHS029             L                    2                   2
## 30 30       MHS030             P                    5                   3
## 31 31       MHS031             P                    2                   7
## 32 32       MHS032             L                    1                   2
## 33 33       MHS033             P                    1                   7
## 34 34       MHS034             P                    5                   4
## 35 35       MHS035             L                    4                   1
## 36 36       MHS036             P                    3                   1
## 37 37       MHS037             L                    4                   6
## 38 38       MHS038             L                    4                   1
## 39 39       MHS039             P                    1                   1
## 40 40       MHS040             L                    4                   2
## 41 41       MHS041             L                    5                   7
## 42 42       MHS042             P                    4                   6
## 43 43       MHS043             P                    4                   5
## 44 44       MHS044             P                    2                   7
## 45 45       MHS045             P                    5                   2
## 46 46       MHS046             L                    1                   3
## 47 47       MHS047             L                    4                   5
## 48 48       MHS048             L                    5                   4
## 49 49       MHS049             P                    4                   5
## 50 50       MHS050             P                    2                   4
## 51 51       MHS051             L                    4                   6
## 52 52       MHS052             L                    4                   4
## 53 53       MHS053             L                    3                   4
## 54 54       MHS054             L                    5                   4
## 55 55       MHS055             P                    2                   7
##    motivasi_belajar  ipk
## 1                82 3.12
## 2                73 3.45
## 3                71 3.07
## 4                98 3.43
## 5                81 2.83
## 6                61 3.10
## 7                44 2.98
## 8                69 3.08
## 9                44 2.82
## 10               46 2.93
## 11               56 2.64
## 12               35 2.71
## 13               59 3.11
## 14               81 3.31
## 15               44 2.90
## 16               90 3.46
## 17               52 3.06
## 18               92 3.89
## 19               84 3.09
## 20               73 2.73
## 21               47 2.96
## 22               72 3.69
## 23               83 3.54
## 24               81 3.61
## 25               70 2.65
## 26               89 3.32
## 27               59 2.94
## 28               53 3.14
## 29               48 2.89
## 30               87 3.40
## 31               71 3.22
## 32               39 2.66
## 33               46 3.11
## 34               87 3.56
## 35               91 3.13
## 36               66 2.95
## 37               68 3.67
## 38               90 3.29
## 39               52 2.52
## 40               80 3.17
## 41               90 3.73
## 42               73 3.05
## 43               91 3.29
## 44               63 3.15
## 45               96 3.33
## 46               43 2.49
## 47               82 3.13
## 48               92 3.70
## 49               73 3.22
## 50               57 3.05
## 51               92 3.65
## 52               88 3.30
## 53               80 3.29
## 54              100 3.41
## 55               71 3.21
head(df_mahasiswa, 6)
##   X id_mahasiswa jenis_kelamin jam_belajar_per_hari frekuensi_login_lms
## 1 1       MHS001             L                    4                   1
## 2 2       MHS002             P                    4                   2
## 3 3       MHS003             P                    2                   6
## 4 4       MHS004             P                    5                   3
## 5 5       MHS005             L                    3                   2
## 6 6       MHS006             L                    3                   7
##   motivasi_belajar  ipk
## 1               82 3.12
## 2               73 3.45
## 3               71 3.07
## 4               98 3.43
## 5               81 2.83
## 6               61 3.10
str(df_mahasiswa)
## 'data.frame':    55 obs. of  7 variables:
##  $ X                   : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ id_mahasiswa        : chr  "MHS001" "MHS002" "MHS003" "MHS004" ...
##  $ jenis_kelamin       : chr  "L" "P" "P" "P" ...
##  $ jam_belajar_per_hari: int  4 4 2 5 3 3 1 3 2 1 ...
##  $ frekuensi_login_lms : int  1 2 6 3 2 7 7 4 6 5 ...
##  $ motivasi_belajar    : int  82 73 71 98 81 61 44 69 44 46 ...
##  $ ipk                 : num  3.12 3.45 3.07 3.43 2.83 3.1 2.98 3.08 2.82 2.93 ...
colSums(is.na(df_mahasiswa))
##                    X         id_mahasiswa        jenis_kelamin 
##                    0                    0                    0 
## jam_belajar_per_hari  frekuensi_login_lms     motivasi_belajar 
##                    0                    0                    0 
##                  ipk 
##                    0
print(table(df_mahasiswa$jenis_kelamin))
## 
##  L  P 
## 32 23
aggregate(ipk ~ jenis_kelamin, df_mahasiswa, mean)
##   jenis_kelamin      ipk
## 1             L 3.158125
## 2             P 3.176957
df_mahasiswa[order(-df_mahasiswa$motivasi_belajar), c("id_mahasiswa", "motivasi_belajar")] |> head(5)
##    id_mahasiswa motivasi_belajar
## 54       MHS054              100
## 4        MHS004               98
## 45       MHS045               96
## 18       MHS018               92
## 48       MHS048               92
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
data_summary <- df_mahasiswa %>%
  group_by(frekuensi_login_lms, ipk) %>%
  mutate (ipk_tinggi = ipk> 3.5)
  
data_summary
## # A tibble: 55 × 8
## # Groups:   frekuensi_login_lms, ipk [55]
##        X id_mahasiswa jenis_kelamin jam_belajar_per_hari frekuensi_login_lms
##    <int> <chr>        <chr>                        <int>               <int>
##  1     1 MHS001       L                                4                   1
##  2     2 MHS002       P                                4                   2
##  3     3 MHS003       P                                2                   6
##  4     4 MHS004       P                                5                   3
##  5     5 MHS005       L                                3                   2
##  6     6 MHS006       L                                3                   7
##  7     7 MHS007       P                                1                   7
##  8     8 MHS008       L                                3                   4
##  9     9 MHS009       P                                2                   6
## 10    10 MHS010       L                                1                   5
## # ℹ 45 more rows
## # ℹ 3 more variables: motivasi_belajar <int>, ipk <dbl>, ipk_tinggi <lgl>
library(dplyr)

df_mahasiswa %>%
  mutate(kelompok = ifelse(jam_belajar_per_hari >= 4, "≥4 jam", "<4 jam")) %>%
  group_by(kelompok) %>%
  summarise(
    Rata_IPK = mean(ipk, na.rm = TRUE),
    jumlah_mahasiswa = n()
  )
## # A tibble: 2 × 3
##   kelompok Rata_IPK jumlah_mahasiswa
##   <chr>       <dbl>            <int>
## 1 <4 jam       2.94               28
## 2 ≥4 jam       3.41               27
df_mahasiswa[order(-df_mahasiswa$ipk), c("id_mahasiswa", "ipk", "motivasi_belajar")] |> head(5)
##    id_mahasiswa  ipk motivasi_belajar
## 18       MHS018 3.89               92
## 41       MHS041 3.73               90
## 48       MHS048 3.70               92
## 22       MHS022 3.69               72
## 37       MHS037 3.67               68
data_summary <- df_mahasiswa %>%
  filter(ipk > 3.5, motivasi_belajar > 85)%>%
  group_by(jenis_kelamin)

data_summary
## # A tibble: 5 × 7
## # Groups:   jenis_kelamin [2]
##       X id_mahasiswa jenis_kelamin jam_belajar_per_hari frekuensi_login_lms
##   <int> <chr>        <chr>                        <int>               <int>
## 1    18 MHS018       L                                5                   7
## 2    34 MHS034       P                                5                   4
## 3    41 MHS041       L                                5                   7
## 4    48 MHS048       L                                5                   4
## 5    51 MHS051       L                                4                   6
## # ℹ 2 more variables: motivasi_belajar <int>, ipk <dbl>