library(readxl)
df_mahasiswa <- read_excel("df_mahasiswa.xlsx")
df_mahasiswa
## # A tibble: 55 × 6
## id_mahasiswa jenis_kelamin jam_belajar_per_hari frekuensi_login_lms
## <chr> <chr> <dbl> <dbl>
## 1 MHS001 L 4 1
## 2 MHS002 P 4 2
## 3 MHS003 P 2 6
## 4 MHS004 P 5 3
## 5 MHS005 L 3 2
## 6 MHS006 L 3 7
## 7 MHS007 P 1 7
## 8 MHS008 L 3 4
## 9 MHS009 P 2 6
## 10 MHS010 L 1 5
## # ℹ 45 more rows
## # ℹ 2 more variables: motivasi_belajar <dbl>, ipk <dbl>
head ("df_mahasiswa.xlsx")
## [1] "df_mahasiswa.xlsx"
any(is.na("df_mahasiswa.xlsx"))
## [1] FALSE
library (dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
df_mahasiswa %>%
count(jenis_kelamin)
## # A tibble: 2 × 2
## jenis_kelamin n
## <chr> <int>
## 1 L 32
## 2 P 23
library (dplyr)
df_mahasiswa %>%
group_by (jenis_kelamin) %>%
summarise (rata_rata_ipk = mean (ipk, na.rm = TRUE))
## # A tibble: 2 × 2
## jenis_kelamin rata_rata_ipk
## <chr> <dbl>
## 1 L 3.16
## 2 P 3.18
library (dplyr)
df_mahasiswa %>%
select (id_mahasiswa, motivasi_belajar) %>%
arrange (desc (motivasi_belajar)) %>%
head (n=1)
## # A tibble: 1 × 2
## id_mahasiswa motivasi_belajar
## <chr> <dbl>
## 1 MHS054 100
library (dplyr)
df_mahasiswa %>%
arrange (desc (frekuensi_login_lms)) %>%
select (id_mahasiswa, ipk) %>%
head (n=1)
## # A tibble: 1 × 2
## id_mahasiswa ipk
## <chr> <dbl>
## 1 MHS006 3.1
library (dplyr)
df_mahasiswa %>%
filter(jam_belajar_per_hari >= 4) %>%
arrange (desc (jam_belajar_per_hari)) %>%
select (id_mahasiswa, ipk) %>%
head (n=1)
## # A tibble: 1 × 2
## id_mahasiswa ipk
## <chr> <dbl>
## 1 MHS004 3.43
library (dplyr)
df_mahasiswa %>%
filter(jam_belajar_per_hari < 4) %>%
arrange (desc (jam_belajar_per_hari)) %>%
select (id_mahasiswa, ipk) %>%
head (n=1)
## # A tibble: 1 × 2
## id_mahasiswa ipk
## <chr> <dbl>
## 1 MHS005 2.83
library (dplyr)
df_mahasiswa %>%
arrange (desc (ipk)) %>%
select (id_mahasiswa, ipk, motivasi_belajar) %>%
head (n=1)
## # A tibble: 1 × 3
## id_mahasiswa ipk motivasi_belajar
## <chr> <dbl> <dbl>
## 1 MHS018 3.89 92
library (dplyr)
df_mahasiswa %>%
filter (ipk > 3.5, motivasi_belajar > 85) %>%
count (jenis_kelamin)
## # A tibble: 2 × 2
## jenis_kelamin n
## <chr> <int>
## 1 L 4
## 2 P 1