dataA <- read.csv("df_mahasiswa.csv")
dataA
##     X id_mahasiswa jenis_kelamin jam_belajar_per_hari frekuensi_login_lms
## 1   1       MHS001             L                    4                   1
## 2   2       MHS002             P                    4                   2
## 3   3       MHS003             P                    2                   6
## 4   4       MHS004             P                    5                   3
## 5   5       MHS005             L                    3                   2
## 6   6       MHS006             L                    3                   7
## 7   7       MHS007             P                    1                   7
## 8   8       MHS008             L                    3                   4
## 9   9       MHS009             P                    2                   6
## 10 10       MHS010             L                    1                   5
## 11 11       MHS011             L                    1                   1
## 12 12       MHS012             P                    1                   2
## 13 13       MHS013             P                    2                   6
## 14 14       MHS014             L                    4                   2
## 15 15       MHS015             L                    1                   2
## 16 16       MHS016             L                    5                   1
## 17 17       MHS017             L                    2                   7
## 18 18       MHS018             L                    5                   7
## 19 19       MHS019             L                    5                   2
## 20 20       MHS020             L                    3                   1
## 21 21       MHS021             L                    1                   6
## 22 22       MHS022             P                    4                   7
## 23 23       MHS023             L                    4                   4
## 24 24       MHS024             P                    5                   4
## 25 25       MHS025             L                    3                   1
## 26 26       MHS026             L                    4                   6
## 27 27       MHS027             L                    2                   3
## 28 28       MHS028             P                    2                   6
## 29 29       MHS029             L                    2                   2
## 30 30       MHS030             P                    5                   3
## 31 31       MHS031             P                    2                   7
## 32 32       MHS032             L                    1                   2
## 33 33       MHS033             P                    1                   7
## 34 34       MHS034             P                    5                   4
## 35 35       MHS035             L                    4                   1
## 36 36       MHS036             P                    3                   1
## 37 37       MHS037             L                    4                   6
## 38 38       MHS038             L                    4                   1
## 39 39       MHS039             P                    1                   1
## 40 40       MHS040             L                    4                   2
## 41 41       MHS041             L                    5                   7
## 42 42       MHS042             P                    4                   6
## 43 43       MHS043             P                    4                   5
## 44 44       MHS044             P                    2                   7
## 45 45       MHS045             P                    5                   2
## 46 46       MHS046             L                    1                   3
## 47 47       MHS047             L                    4                   5
## 48 48       MHS048             L                    5                   4
## 49 49       MHS049             P                    4                   5
## 50 50       MHS050             P                    2                   4
## 51 51       MHS051             L                    4                   6
## 52 52       MHS052             L                    4                   4
## 53 53       MHS053             L                    3                   4
## 54 54       MHS054             L                    5                   4
## 55 55       MHS055             P                    2                   7
##    motivasi_belajar  ipk
## 1                82 3.12
## 2                73 3.45
## 3                71 3.07
## 4                98 3.43
## 5                81 2.83
## 6                61 3.10
## 7                44 2.98
## 8                69 3.08
## 9                44 2.82
## 10               46 2.93
## 11               56 2.64
## 12               35 2.71
## 13               59 3.11
## 14               81 3.31
## 15               44 2.90
## 16               90 3.46
## 17               52 3.06
## 18               92 3.89
## 19               84 3.09
## 20               73 2.73
## 21               47 2.96
## 22               72 3.69
## 23               83 3.54
## 24               81 3.61
## 25               70 2.65
## 26               89 3.32
## 27               59 2.94
## 28               53 3.14
## 29               48 2.89
## 30               87 3.40
## 31               71 3.22
## 32               39 2.66
## 33               46 3.11
## 34               87 3.56
## 35               91 3.13
## 36               66 2.95
## 37               68 3.67
## 38               90 3.29
## 39               52 2.52
## 40               80 3.17
## 41               90 3.73
## 42               73 3.05
## 43               91 3.29
## 44               63 3.15
## 45               96 3.33
## 46               43 2.49
## 47               82 3.13
## 48               92 3.70
## 49               73 3.22
## 50               57 3.05
## 51               92 3.65
## 52               88 3.30
## 53               80 3.29
## 54              100 3.41
## 55               71 3.21
head(dataA)
##   X id_mahasiswa jenis_kelamin jam_belajar_per_hari frekuensi_login_lms
## 1 1       MHS001             L                    4                   1
## 2 2       MHS002             P                    4                   2
## 3 3       MHS003             P                    2                   6
## 4 4       MHS004             P                    5                   3
## 5 5       MHS005             L                    3                   2
## 6 6       MHS006             L                    3                   7
##   motivasi_belajar  ipk
## 1               82 3.12
## 2               73 3.45
## 3               71 3.07
## 4               98 3.43
## 5               81 2.83
## 6               61 3.10
str(dataA)
## 'data.frame':    55 obs. of  7 variables:
##  $ X                   : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ id_mahasiswa        : chr  "MHS001" "MHS002" "MHS003" "MHS004" ...
##  $ jenis_kelamin       : chr  "L" "P" "P" "P" ...
##  $ jam_belajar_per_hari: int  4 4 2 5 3 3 1 3 2 1 ...
##  $ frekuensi_login_lms : int  1 2 6 3 2 7 7 4 6 5 ...
##  $ motivasi_belajar    : int  82 73 71 98 81 61 44 69 44 46 ...
##  $ ipk                 : num  3.12 3.45 3.07 3.43 2.83 3.1 2.98 3.08 2.82 2.93 ...
colSums(is.na(dataA))
##                    X         id_mahasiswa        jenis_kelamin 
##                    0                    0                    0 
## jam_belajar_per_hari  frekuensi_login_lms     motivasi_belajar 
##                    0                    0                    0 
##                  ipk 
##                    0
table(dataA$jenis_kelamin)
## 
##  L  P 
## 32 23
unique(dataA$id_mahasiswa)
##  [1] "MHS001" "MHS002" "MHS003" "MHS004" "MHS005" "MHS006" "MHS007" "MHS008"
##  [9] "MHS009" "MHS010" "MHS011" "MHS012" "MHS013" "MHS014" "MHS015" "MHS016"
## [17] "MHS017" "MHS018" "MHS019" "MHS020" "MHS021" "MHS022" "MHS023" "MHS024"
## [25] "MHS025" "MHS026" "MHS027" "MHS028" "MHS029" "MHS030" "MHS031" "MHS032"
## [33] "MHS033" "MHS034" "MHS035" "MHS036" "MHS037" "MHS038" "MHS039" "MHS040"
## [41] "MHS041" "MHS042" "MHS043" "MHS044" "MHS045" "MHS046" "MHS047" "MHS048"
## [49] "MHS049" "MHS050" "MHS051" "MHS052" "MHS053" "MHS054" "MHS055"
length(dataA$id_mahasiswa)
## [1] 55
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
dataA %>%
  filter(jam_belajar_per_hari > 4) %>%
  group_by(id_mahasiswa) %>%
  summarise(jam_belajar_per_hari) %>% 
  arrange(desc(jam_belajar_per_hari)) %>% 
  head(10)
## # A tibble: 10 × 2
##    id_mahasiswa jam_belajar_per_hari
##    <chr>                       <int>
##  1 MHS004                          5
##  2 MHS016                          5
##  3 MHS018                          5
##  4 MHS019                          5
##  5 MHS024                          5
##  6 MHS030                          5
##  7 MHS034                          5
##  8 MHS041                          5
##  9 MHS045                          5
## 10 MHS048                          5
dataA %>%
  filter(frekuensi_login_lms > 6) %>%
  group_by(id_mahasiswa) %>%
  summarise(frekuensi_login_lms) %>% 
  arrange(desc(frekuensi_login_lms)) %>% 
  head(10)
## # A tibble: 10 × 2
##    id_mahasiswa frekuensi_login_lms
##    <chr>                      <int>
##  1 MHS006                         7
##  2 MHS007                         7
##  3 MHS017                         7
##  4 MHS018                         7
##  5 MHS022                         7
##  6 MHS031                         7
##  7 MHS033                         7
##  8 MHS041                         7
##  9 MHS044                         7
## 10 MHS055                         7
dataA %>%
  filter(motivasi_belajar > 90) %>%
  group_by(id_mahasiswa) %>%
  summarise(motivasi_belajar) %>% 
  arrange(desc(motivasi_belajar)) %>% 
  head(10)
## # A tibble: 8 × 2
##   id_mahasiswa motivasi_belajar
##   <chr>                   <int>
## 1 MHS054                    100
## 2 MHS004                     98
## 3 MHS045                     96
## 4 MHS018                     92
## 5 MHS048                     92
## 6 MHS051                     92
## 7 MHS035                     91
## 8 MHS043                     91
dataA %>%
  filter(ipk > 3) %>%
  group_by(id_mahasiswa) %>%
  summarise(ipk) %>% 
  arrange(desc(ipk)) %>% 
  head(10)
## # A tibble: 10 × 2
##    id_mahasiswa   ipk
##    <chr>        <dbl>
##  1 MHS018        3.89
##  2 MHS041        3.73
##  3 MHS048        3.7 
##  4 MHS022        3.69
##  5 MHS037        3.67
##  6 MHS051        3.65
##  7 MHS024        3.61
##  8 MHS034        3.56
##  9 MHS023        3.54
## 10 MHS016        3.46
dataf <- subset(dataA, jam_belajar_per_hari >= 4 )
dataf
##     X id_mahasiswa jenis_kelamin jam_belajar_per_hari frekuensi_login_lms
## 1   1       MHS001             L                    4                   1
## 2   2       MHS002             P                    4                   2
## 4   4       MHS004             P                    5                   3
## 14 14       MHS014             L                    4                   2
## 16 16       MHS016             L                    5                   1
## 18 18       MHS018             L                    5                   7
## 19 19       MHS019             L                    5                   2
## 22 22       MHS022             P                    4                   7
## 23 23       MHS023             L                    4                   4
## 24 24       MHS024             P                    5                   4
## 26 26       MHS026             L                    4                   6
## 30 30       MHS030             P                    5                   3
## 34 34       MHS034             P                    5                   4
## 35 35       MHS035             L                    4                   1
## 37 37       MHS037             L                    4                   6
## 38 38       MHS038             L                    4                   1
## 40 40       MHS040             L                    4                   2
## 41 41       MHS041             L                    5                   7
## 42 42       MHS042             P                    4                   6
## 43 43       MHS043             P                    4                   5
## 45 45       MHS045             P                    5                   2
## 47 47       MHS047             L                    4                   5
## 48 48       MHS048             L                    5                   4
## 49 49       MHS049             P                    4                   5
## 51 51       MHS051             L                    4                   6
## 52 52       MHS052             L                    4                   4
## 54 54       MHS054             L                    5                   4
##    motivasi_belajar  ipk
## 1                82 3.12
## 2                73 3.45
## 4                98 3.43
## 14               81 3.31
## 16               90 3.46
## 18               92 3.89
## 19               84 3.09
## 22               72 3.69
## 23               83 3.54
## 24               81 3.61
## 26               89 3.32
## 30               87 3.40
## 34               87 3.56
## 35               91 3.13
## 37               68 3.67
## 38               90 3.29
## 40               80 3.17
## 41               90 3.73
## 42               73 3.05
## 43               91 3.29
## 45               96 3.33
## 47               82 3.13
## 48               92 3.70
## 49               73 3.22
## 51               92 3.65
## 52               88 3.30
## 54              100 3.41
df <- subset(dataA, frekuensi_login_lms > 5)
df
##     X id_mahasiswa jenis_kelamin jam_belajar_per_hari frekuensi_login_lms
## 3   3       MHS003             P                    2                   6
## 6   6       MHS006             L                    3                   7
## 7   7       MHS007             P                    1                   7
## 9   9       MHS009             P                    2                   6
## 13 13       MHS013             P                    2                   6
## 17 17       MHS017             L                    2                   7
## 18 18       MHS018             L                    5                   7
## 21 21       MHS021             L                    1                   6
## 22 22       MHS022             P                    4                   7
## 26 26       MHS026             L                    4                   6
## 28 28       MHS028             P                    2                   6
## 31 31       MHS031             P                    2                   7
## 33 33       MHS033             P                    1                   7
## 37 37       MHS037             L                    4                   6
## 41 41       MHS041             L                    5                   7
## 42 42       MHS042             P                    4                   6
## 44 44       MHS044             P                    2                   7
## 51 51       MHS051             L                    4                   6
## 55 55       MHS055             P                    2                   7
##    motivasi_belajar  ipk
## 3                71 3.07
## 6                61 3.10
## 7                44 2.98
## 9                44 2.82
## 13               59 3.11
## 17               52 3.06
## 18               92 3.89
## 21               47 2.96
## 22               72 3.69
## 26               89 3.32
## 28               53 3.14
## 31               71 3.22
## 33               46 3.11
## 37               68 3.67
## 41               90 3.73
## 42               73 3.05
## 44               63 3.15
## 51               92 3.65
## 55               71 3.21
data_filter <- subset(dataA, ipk > 3.5 & motivasi_belajar > 85)
data_filter
##     X id_mahasiswa jenis_kelamin jam_belajar_per_hari frekuensi_login_lms
## 18 18       MHS018             L                    5                   7
## 34 34       MHS034             P                    5                   4
## 41 41       MHS041             L                    5                   7
## 48 48       MHS048             L                    5                   4
## 51 51       MHS051             L                    4                   6
##    motivasi_belajar  ipk
## 18               92 3.89
## 34               87 3.56
## 41               90 3.73
## 48               92 3.70
## 51               92 3.65
mean(dataA$jam_belajar_per_hari)
## [1] 3.127273
aggregate(jam_belajar_per_hari ~ jenis_kelamin, data = dataA, mean)
##   jenis_kelamin jam_belajar_per_hari
## 1             L             3.250000
## 2             P             2.956522
mean(dataA$ipk)
## [1] 3.166
aggregate(ipk ~ jenis_kelamin, data = dataA, mean)
##   jenis_kelamin      ipk
## 1             L 3.158125
## 2             P 3.176957
aggregate( motivasi_belajar ~ jenis_kelamin, data = dataA, mean)
##   jenis_kelamin motivasi_belajar
## 1             L         73.18750
## 2             P         67.95652
library(ggplot2)
ggplot(dataA,aes(x = id_mahasiswa, y = jam_belajar_per_hari)) + geom_bar(stat = "identity", fill = "blue") + labs(title = "Grafik jam belajar mahasiswa", x = "ID Mahasiswa", y = "Jam Belajar per Hari")