data <- read.csv("df_mahasiswa.csv")
df_mahasiswa.csv <- read.csv("df_mahasiswa.csv")
df_mahasiswa.csv
## X id_mahasiswa jenis_kelamin jam_belajar_per_hari frekuensi_login_lms
## 1 1 MHS001 L 4 1
## 2 2 MHS002 P 4 2
## 3 3 MHS003 P 2 6
## 4 4 MHS004 P 5 3
## 5 5 MHS005 L 3 2
## 6 6 MHS006 L 3 7
## 7 7 MHS007 P 1 7
## 8 8 MHS008 L 3 4
## 9 9 MHS009 P 2 6
## 10 10 MHS010 L 1 5
## 11 11 MHS011 L 1 1
## 12 12 MHS012 P 1 2
## 13 13 MHS013 P 2 6
## 14 14 MHS014 L 4 2
## 15 15 MHS015 L 1 2
## 16 16 MHS016 L 5 1
## 17 17 MHS017 L 2 7
## 18 18 MHS018 L 5 7
## 19 19 MHS019 L 5 2
## 20 20 MHS020 L 3 1
## 21 21 MHS021 L 1 6
## 22 22 MHS022 P 4 7
## 23 23 MHS023 L 4 4
## 24 24 MHS024 P 5 4
## 25 25 MHS025 L 3 1
## 26 26 MHS026 L 4 6
## 27 27 MHS027 L 2 3
## 28 28 MHS028 P 2 6
## 29 29 MHS029 L 2 2
## 30 30 MHS030 P 5 3
## 31 31 MHS031 P 2 7
## 32 32 MHS032 L 1 2
## 33 33 MHS033 P 1 7
## 34 34 MHS034 P 5 4
## 35 35 MHS035 L 4 1
## 36 36 MHS036 P 3 1
## 37 37 MHS037 L 4 6
## 38 38 MHS038 L 4 1
## 39 39 MHS039 P 1 1
## 40 40 MHS040 L 4 2
## 41 41 MHS041 L 5 7
## 42 42 MHS042 P 4 6
## 43 43 MHS043 P 4 5
## 44 44 MHS044 P 2 7
## 45 45 MHS045 P 5 2
## 46 46 MHS046 L 1 3
## 47 47 MHS047 L 4 5
## 48 48 MHS048 L 5 4
## 49 49 MHS049 P 4 5
## 50 50 MHS050 P 2 4
## 51 51 MHS051 L 4 6
## 52 52 MHS052 L 4 4
## 53 53 MHS053 L 3 4
## 54 54 MHS054 L 5 4
## 55 55 MHS055 P 2 7
## motivasi_belajar ipk
## 1 82 3.12
## 2 73 3.45
## 3 71 3.07
## 4 98 3.43
## 5 81 2.83
## 6 61 3.10
## 7 44 2.98
## 8 69 3.08
## 9 44 2.82
## 10 46 2.93
## 11 56 2.64
## 12 35 2.71
## 13 59 3.11
## 14 81 3.31
## 15 44 2.90
## 16 90 3.46
## 17 52 3.06
## 18 92 3.89
## 19 84 3.09
## 20 73 2.73
## 21 47 2.96
## 22 72 3.69
## 23 83 3.54
## 24 81 3.61
## 25 70 2.65
## 26 89 3.32
## 27 59 2.94
## 28 53 3.14
## 29 48 2.89
## 30 87 3.40
## 31 71 3.22
## 32 39 2.66
## 33 46 3.11
## 34 87 3.56
## 35 91 3.13
## 36 66 2.95
## 37 68 3.67
## 38 90 3.29
## 39 52 2.52
## 40 80 3.17
## 41 90 3.73
## 42 73 3.05
## 43 91 3.29
## 44 63 3.15
## 45 96 3.33
## 46 43 2.49
## 47 82 3.13
## 48 92 3.70
## 49 73 3.22
## 50 57 3.05
## 51 92 3.65
## 52 88 3.30
## 53 80 3.29
## 54 100 3.41
## 55 71 3.21
str(data)
## 'data.frame': 55 obs. of 7 variables:
## $ X : int 1 2 3 4 5 6 7 8 9 10 ...
## $ id_mahasiswa : chr "MHS001" "MHS002" "MHS003" "MHS004" ...
## $ jenis_kelamin : chr "L" "P" "P" "P" ...
## $ jam_belajar_per_hari: int 4 4 2 5 3 3 1 3 2 1 ...
## $ frekuensi_login_lms : int 1 2 6 3 2 7 7 4 6 5 ...
## $ motivasi_belajar : int 82 73 71 98 81 61 44 69 44 46 ...
## $ ipk : num 3.12 3.45 3.07 3.43 2.83 3.1 2.98 3.08 2.82 2.93 ...
head("df_mahasiswa, 5")
## [1] "df_mahasiswa, 5"
str(df_mahasiswa.csv)
## 'data.frame': 55 obs. of 7 variables:
## $ X : int 1 2 3 4 5 6 7 8 9 10 ...
## $ id_mahasiswa : chr "MHS001" "MHS002" "MHS003" "MHS004" ...
## $ jenis_kelamin : chr "L" "P" "P" "P" ...
## $ jam_belajar_per_hari: int 4 4 2 5 3 3 1 3 2 1 ...
## $ frekuensi_login_lms : int 1 2 6 3 2 7 7 4 6 5 ...
## $ motivasi_belajar : int 82 73 71 98 81 61 44 69 44 46 ...
## $ ipk : num 3.12 3.45 3.07 3.43 2.83 3.1 2.98 3.08 2.82 2.93 ...
colSums(is.na(df_mahasiswa.csv))
## X id_mahasiswa jenis_kelamin
## 0 0 0
## jam_belajar_per_hari frekuensi_login_lms motivasi_belajar
## 0 0 0
## ipk
## 0
names(df_mahasiswa.csv)
## [1] "X" "id_mahasiswa" "jenis_kelamin"
## [4] "jam_belajar_per_hari" "frekuensi_login_lms" "motivasi_belajar"
## [7] "ipk"
table(df_mahasiswa.csv$jenis_kelamin)
##
## L P
## 32 23
aggregate(ipk ~ jenis_kelamin, data = df_mahasiswa.csv, mean)
## jenis_kelamin ipk
## 1 L 3.158125
## 2 P 3.176957
df_mahasiswa.csv[order(-df_mahasiswa.csv$motivasi_belajar), c("id_mahasiswa", "motivasi_belajar")] |> head(1)
## id_mahasiswa motivasi_belajar
## 54 MHS054 100
df_mahasiswa.csv[order(-df_mahasiswa.csv$frekuensi_login_lms), c("ipk", "frekuensi_login_lms", "id_mahasiswa")] |> head(1)
## ipk frekuensi_login_lms id_mahasiswa
## 6 3.1 7 MHS006
data_pilihan <- data[, c("id_mahasiswa", "ipk", "jam_belajar_per_hari")]
belajar_4jam_lebih = subset(data, jam_belajar_per_hari >= 4)
belajar_kurang_4jam = subset(data, jam_belajar_per_hari < 4)
rata_lebih4 = mean(belajar_4jam_lebih$ipk)
rata_kurang4 = mean(belajar_kurang_4jam$ipk)
data_pilihan
## id_mahasiswa ipk jam_belajar_per_hari
## 1 MHS001 3.12 4
## 2 MHS002 3.45 4
## 3 MHS003 3.07 2
## 4 MHS004 3.43 5
## 5 MHS005 2.83 3
## 6 MHS006 3.10 3
## 7 MHS007 2.98 1
## 8 MHS008 3.08 3
## 9 MHS009 2.82 2
## 10 MHS010 2.93 1
## 11 MHS011 2.64 1
## 12 MHS012 2.71 1
## 13 MHS013 3.11 2
## 14 MHS014 3.31 4
## 15 MHS015 2.90 1
## 16 MHS016 3.46 5
## 17 MHS017 3.06 2
## 18 MHS018 3.89 5
## 19 MHS019 3.09 5
## 20 MHS020 2.73 3
## 21 MHS021 2.96 1
## 22 MHS022 3.69 4
## 23 MHS023 3.54 4
## 24 MHS024 3.61 5
## 25 MHS025 2.65 3
## 26 MHS026 3.32 4
## 27 MHS027 2.94 2
## 28 MHS028 3.14 2
## 29 MHS029 2.89 2
## 30 MHS030 3.40 5
## 31 MHS031 3.22 2
## 32 MHS032 2.66 1
## 33 MHS033 3.11 1
## 34 MHS034 3.56 5
## 35 MHS035 3.13 4
## 36 MHS036 2.95 3
## 37 MHS037 3.67 4
## 38 MHS038 3.29 4
## 39 MHS039 2.52 1
## 40 MHS040 3.17 4
## 41 MHS041 3.73 5
## 42 MHS042 3.05 4
## 43 MHS043 3.29 4
## 44 MHS044 3.15 2
## 45 MHS045 3.33 5
## 46 MHS046 2.49 1
## 47 MHS047 3.13 4
## 48 MHS048 3.70 5
## 49 MHS049 3.22 4
## 50 MHS050 3.05 2
## 51 MHS051 3.65 4
## 52 MHS052 3.30 4
## 53 MHS053 3.29 3
## 54 MHS054 3.41 5
## 55 MHS055 3.21 2
belajar_4jam_lebih
## X id_mahasiswa jenis_kelamin jam_belajar_per_hari frekuensi_login_lms
## 1 1 MHS001 L 4 1
## 2 2 MHS002 P 4 2
## 4 4 MHS004 P 5 3
## 14 14 MHS014 L 4 2
## 16 16 MHS016 L 5 1
## 18 18 MHS018 L 5 7
## 19 19 MHS019 L 5 2
## 22 22 MHS022 P 4 7
## 23 23 MHS023 L 4 4
## 24 24 MHS024 P 5 4
## 26 26 MHS026 L 4 6
## 30 30 MHS030 P 5 3
## 34 34 MHS034 P 5 4
## 35 35 MHS035 L 4 1
## 37 37 MHS037 L 4 6
## 38 38 MHS038 L 4 1
## 40 40 MHS040 L 4 2
## 41 41 MHS041 L 5 7
## 42 42 MHS042 P 4 6
## 43 43 MHS043 P 4 5
## 45 45 MHS045 P 5 2
## 47 47 MHS047 L 4 5
## 48 48 MHS048 L 5 4
## 49 49 MHS049 P 4 5
## 51 51 MHS051 L 4 6
## 52 52 MHS052 L 4 4
## 54 54 MHS054 L 5 4
## motivasi_belajar ipk
## 1 82 3.12
## 2 73 3.45
## 4 98 3.43
## 14 81 3.31
## 16 90 3.46
## 18 92 3.89
## 19 84 3.09
## 22 72 3.69
## 23 83 3.54
## 24 81 3.61
## 26 89 3.32
## 30 87 3.40
## 34 87 3.56
## 35 91 3.13
## 37 68 3.67
## 38 90 3.29
## 40 80 3.17
## 41 90 3.73
## 42 73 3.05
## 43 91 3.29
## 45 96 3.33
## 47 82 3.13
## 48 92 3.70
## 49 73 3.22
## 51 92 3.65
## 52 88 3.30
## 54 100 3.41
belajar_kurang_4jam
## X id_mahasiswa jenis_kelamin jam_belajar_per_hari frekuensi_login_lms
## 3 3 MHS003 P 2 6
## 5 5 MHS005 L 3 2
## 6 6 MHS006 L 3 7
## 7 7 MHS007 P 1 7
## 8 8 MHS008 L 3 4
## 9 9 MHS009 P 2 6
## 10 10 MHS010 L 1 5
## 11 11 MHS011 L 1 1
## 12 12 MHS012 P 1 2
## 13 13 MHS013 P 2 6
## 15 15 MHS015 L 1 2
## 17 17 MHS017 L 2 7
## 20 20 MHS020 L 3 1
## 21 21 MHS021 L 1 6
## 25 25 MHS025 L 3 1
## 27 27 MHS027 L 2 3
## 28 28 MHS028 P 2 6
## 29 29 MHS029 L 2 2
## 31 31 MHS031 P 2 7
## 32 32 MHS032 L 1 2
## 33 33 MHS033 P 1 7
## 36 36 MHS036 P 3 1
## 39 39 MHS039 P 1 1
## 44 44 MHS044 P 2 7
## 46 46 MHS046 L 1 3
## 50 50 MHS050 P 2 4
## 53 53 MHS053 L 3 4
## 55 55 MHS055 P 2 7
## motivasi_belajar ipk
## 3 71 3.07
## 5 81 2.83
## 6 61 3.10
## 7 44 2.98
## 8 69 3.08
## 9 44 2.82
## 10 46 2.93
## 11 56 2.64
## 12 35 2.71
## 13 59 3.11
## 15 44 2.90
## 17 52 3.06
## 20 73 2.73
## 21 47 2.96
## 25 70 2.65
## 27 59 2.94
## 28 53 3.14
## 29 48 2.89
## 31 71 3.22
## 32 39 2.66
## 33 46 3.11
## 36 66 2.95
## 39 52 2.52
## 44 63 3.15
## 46 43 2.49
## 50 57 3.05
## 53 80 3.29
## 55 71 3.21
rata_kurang4
## [1] 2.935357
rata_lebih4
## [1] 3.405185
maks_ipk = max(data$ipk)
mahasiswa_ipk_tertinggi = subset(data, ipk == maks_ipk,
select = c(id_mahasiswa, ipk, motivasi_belajar))
print(mahasiswa_ipk_tertinggi)
## id_mahasiswa ipk motivasi_belajar
## 18 MHS018 3.89 92
mahasiswa_pintar = subset(data, ipk > 3.5 & motivasi_belajar > 85)
table(mahasiswa_pintar$jenis_kelamin)
##
## L P
## 4 1