dirty_iris <- read.csv("https://raw.githubusercontent.com/edwindj/datacleaning/master/data/dirty_iris.csv")
sum(is.na(dirty_iris$Petal.Length))
## [1] 19
num_complete <- sum(complete.cases(dirty_iris))
#Total Observations
num_total <- nrow(dirty_iris)
# % of Complete Observations
perc_complete <- (num_complete / num_total) * 100
num_complete
## [1] 96
perc_complete
## [1] 64
# Check for special values in numeric columns
sapply(dirty_iris[, 1:4], function(x) {
c(
NA_count = sum(is.na(x)),
NaN_count = sum(is.nan(x)),
Inf_count = sum(is.infinite(x))
)
})
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## NA_count 10 17 19 12
## NaN_count 0 0 0 0
## Inf_count 0 0 0 1
num_cols <- sapply(dirty_iris, is.numeric)
# Replace NaN with NA
dirty_iris[, num_cols][is.nan(as.matrix(dirty_iris[, num_cols]))] <- NA
# Replace Inf and -Inf with NA
dirty_iris[, num_cols][is.infinite(as.matrix(dirty_iris[, num_cols]))] <- NA
# Check if replacement worked
sapply(dirty_iris[, num_cols], function(x) {
c(
NA_count = sum(is.na(x)),
NaN_count = sum(is.nan(x)),
Inf_count = sum(is.infinite(x))
)
})
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## NA_count 10 17 19 13
## NaN_count 0 0 0 0
## Inf_count 0 0 0 0
# Identify violations
violations <- subset(dirty_iris, Sepal.Width <= 0 | Sepal.Length > 30)
# View violating rows
violations
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 16 5.0 -3 3.5 1.0 versicolor
## 28 73.0 29 63.0 NA virginica
## 125 49.0 30 14.0 2.0 setosa
## 130 5.7 0 1.7 0.3 setosa
# Count how many violations
nrow(violations)
## [1] 4
# Correct negative values: replace with Absolute Value
dirty_iris$Sepal.Width[which(dirty_iris$Sepal.Width < 0)] <-
abs(dirty_iris$Sepal.Width[which(dirty_iris$Sepal.Width < 0)])
# Correct Zero Values: replace with NA
dirty_iris$Sepal.Width[which(dirty_iris$Sepal.Width == 0)] <- NA
# Check the Corrected rows
dirty_iris[which(dirty_iris$Sepal.Width <= 0 | is.na(dirty_iris$Sepal.Width)), "Sepal.With"]
## NULL
# --- 1. Sepal.Width: mean imputation ---
dirty_iris$Sepal.Width[is.na(dirty_iris$Sepal.Width)] <-
mean(dirty_iris$Sepal.Width, na.rm = TRUE)
# --- 2. Petal.Length: median imputation ---
dirty_iris$Petal.Length[is.na(dirty_iris$Petal.Length)] <-
median(dirty_iris$Petal.Length, na.rm = TRUE)
# --- 3. Sepal.Length: linear regression imputation ---
lm_model <- lm(Sepal.Length ~ Sepal.Width + Petal.Length + Petal.Width + Species,
data = dirty_iris, na.action = na.exclude)
predicted <- predict(lm_model, newdata = dirty_iris)
dirty_iris$Sepal.Length[is.na(dirty_iris$Sepal.Length)] <-
predicted[is.na(dirty_iris$Sepal.Length)]
# --- 4. Petal.Width: kNN imputation ---
# Check if missing values remain
colSums(is.na(dirty_iris))
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 0 0 0 13 0