# Load packages

# Core
library(tidyverse)
library(tidyquant)

Goal

Visualize expected returns and risk to make it easier to compare the performance of multiple assets and portfolios.

Choose your stocks.

from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("MSFT", "AAPL", "GOOG") 

prices <- tq_get(x = symbols,
                 get = "stock.prices",
                 from = "2012-12-31",
                 to = "2017-12-31")
prices
## # A tibble: 3,780 × 8
##    symbol date        open  high   low close   volume adjusted
##    <chr>  <date>     <dbl> <dbl> <dbl> <dbl>    <dbl>    <dbl>
##  1 MSFT   2012-12-31  26.6  26.8  26.4  26.7 42749500     21.6
##  2 MSFT   2013-01-02  27.2  27.7  27.1  27.6 52899300     22.3
##  3 MSFT   2013-01-03  27.6  27.6  27.2  27.2 48294400     22.0
##  4 MSFT   2013-01-04  27.3  27.3  26.7  26.7 52521100     21.6
##  5 MSFT   2013-01-07  26.8  26.9  26.6  26.7 37110400     21.5
##  6 MSFT   2013-01-08  26.8  26.8  26.5  26.5 44703100     21.4
##  7 MSFT   2013-01-09  26.7  26.8  26.6  26.7 49047900     21.5
##  8 MSFT   2013-01-10  26.6  27.0  26.3  26.5 71431300     21.3
##  9 MSFT   2013-01-11  26.5  26.9  26.3  26.8 55512100     21.6
## 10 MSFT   2013-01-14  26.9  27.1  26.8  26.9 48324400     21.7
## # ℹ 3,770 more rows

2 Convert prices to returns (monthly)

asset_returns_tbl <- prices %>%
    group_by(symbol) %>%
    tq_transmute(select = adjusted,
                 mutate_fun = periodReturn,
                 period = "quarterly",
                 type = "log") %>%
    slice(-1) %>%
    ungroup() %>%
    set_names(c("asset", "date", "returns"))
asset_returns_tbl
## # A tibble: 60 × 3
##    asset date       returns
##    <chr> <date>       <dbl>
##  1 AAPL  2013-03-28 -0.178 
##  2 AAPL  2013-06-28 -0.103 
##  3 AAPL  2013-09-30  0.191 
##  4 AAPL  2013-12-31  0.169 
##  5 AAPL  2014-03-31 -0.0383
##  6 AAPL  2014-06-30  0.198 
##  7 AAPL  2014-09-30  0.0858
##  8 AAPL  2014-12-31  0.0956
##  9 AAPL  2015-03-31  0.124 
## 10 AAPL  2015-06-30  0.0122
## # ℹ 50 more rows

3 Assign a weight to each asset (change the weigting scheme)

symbols <- asset_returns_tbl %>%
    distinct(asset) %>% 
    pull()
weights <- c(0.25, 0.25, 0.5)
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 3 × 2
##   symbols weights
##   <chr>     <dbl>
## 1 AAPL       0.25
## 2 GOOG       0.25
## 3 MSFT       0.5

4 Build a portfolio

portfolio_returns_tbl <- asset_returns_tbl %>%
    tq_portfolio(assets_col = asset,
                 returns_col = returns,
                 weights = w_tbl,
                 rebalance_on = "months")
portfolio_returns_tbl
## # A tibble: 20 × 2
##    date       portfolio.returns
##    <date>                 <dbl>
##  1 2013-03-28           0.0228 
##  2 2013-06-28           0.0976 
##  3 2013-09-30           0.0314 
##  4 2013-12-31           0.166  
##  5 2014-03-31           0.0386 
##  6 2014-06-30           0.0696 
##  7 2014-09-30           0.0784 
##  8 2014-12-31           0.00492
##  9 2015-03-31          -0.0220 
## 10 2015-06-30           0.0353 
## 11 2015-09-30           0.0125 
## 12 2015-12-31           0.161  
## 13 2016-03-31           0.00675
## 14 2016-06-30          -0.0843 
## 15 2016-09-30           0.135  
## 16 2016-12-30           0.0469 
## 17 2017-03-31           0.105  
## 18 2017-06-30           0.0501 
## 19 2017-09-29           0.0729 
## 20 2017-12-29           0.118

5 Compute Standard Deviation

portfolio_sd_tidyquant_builtin_percent <- portfolio_returns_tbl %>% 
    tq_performance(Ra = portfolio.returns, 
                   performance_fun = table.Stats) %>%
    select(Stdev) %>%
    mutate(tq_sd = round(Stdev, 4))
portfolio_sd_tidyquant_builtin_percent
## # A tibble: 1 × 2
##    Stdev  tq_sd
##    <dbl>  <dbl>
## 1 0.0622 0.0622
# Mean of portfolio returns 
portfolio_mean_tidyquant_builtin_percent <- mean(portfolio_returns_tbl$portfolio.returns)
portfolio_mean_tidyquant_builtin_percent
## [1] 0.0572837

6 Plot: Expected Returns versus Risk

sd_mean_tbl <- asset_returns_tbl %>%
    group_by(asset) %>%
    tq_performance(Ra = returns,
                   performance_fun = table.Stats) %>% 
    select(Mean = ArithmeticMean, Stdev) %>%
    ungroup() %>% 
    # Add portfolio sd
    add_row(tibble(asset = "Portfolio",
                   Mean = portfolio_mean_tidyquant_builtin_percent,
                   Stdev = portfolio_sd_tidyquant_builtin_percent$tq_sd))
sd_mean_tbl
## # A tibble: 4 × 3
##   asset       Mean  Stdev
##   <chr>      <dbl>  <dbl>
## 1 AAPL      0.045  0.119 
## 2 GOOG      0.0544 0.0905
## 3 MSFT      0.0648 0.0855
## 4 Portfolio 0.0573 0.0622
sd_mean_tbl %>%
    ggplot(aes(x = Stdev, y = Mean, color = asset)) + 
    geom_point() +
    ggrepel::geom_text_repel(aes(label = asset))

### 24 Months Rolling Volatility

rolling_sd_tbl <- portfolio_returns_tbl %>%
    tq_mutate(select = portfolio.returns,
              mutate_fun = rollapply,
              width = 3,
              FUN = sd, col_rename = "rolling_sd") %>%
    na.omit() %>%
    select(date,rolling_sd)
rolling_sd_tbl
## # A tibble: 18 × 2
##    date       rolling_sd
##    <date>          <dbl>
##  1 2013-09-30     0.0409
##  2 2013-12-31     0.0673
##  3 2014-03-31     0.0757
##  4 2014-06-30     0.0664
##  5 2014-09-30     0.0209
##  6 2014-12-31     0.0401
##  7 2015-03-31     0.0520
##  8 2015-06-30     0.0287
##  9 2015-09-30     0.0289
## 10 2015-12-31     0.0799
## 11 2016-03-31     0.0874
## 12 2016-06-30     0.124 
## 13 2016-09-30     0.110 
## 14 2016-12-30     0.110 
## 15 2017-03-31     0.0446
## 16 2017-06-30     0.0327
## 17 2017-09-29     0.0276
## 18 2017-12-29     0.0344
rolling_sd_tbl %>%
    ggplot(aes(x = date, y = rolling_sd)) +
    geom_line(color = "cornflowerblue") +
    #Formatting
    scale_y_continuous(labels = scales::percent_format()) +
    # Labeling
    labs(x = NULL,
         y = NULL,
         title = "24-Month Rolling Volatility") +
    theme(plot.title = element_text(hjust =  0.5))

How should you expect your portfolio to perform relative to its assets in the portfolio? Would you invest all your money in any of the individual stocks instead of the portfolio? Discuss both in terms of expected return and risk.
I would expect the portfolio to be less risky than the individual assets because it has a lower standard deviation. The expected return of the portfolio is also higher than 2 out of the 3 individual stocks. This is a very diversified portfolio that I would invest my money into rather than an individual stock.