# Load packages
# Core
library(tidyverse)
library(tidyquant)
Collect individual returns into a portfolio by assigning a weight to each stock
Choose your stocks.
from 2012-12-31 to 2017-12-31
symbols <- c("DELL", "NVDA", "AMZN", "AAPL", "TSLA")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2024-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period ="monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
#Symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AAPL" "AMZN" "DELL" "NVDA" "TSLA"
#Weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 AAPL 0.25
## 2 AMZN 0.25
## 3 DELL 0.2
## 4 NVDA 0.2
## 5 TSLA 0.1
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
reabalance_on = "months")
portfolio_returns_tbl
## # A tibble: 144 × 2
## date portfolio.returns
## <date> <dbl>
## 1 2013-01-31 -0.0145
## 2 2013-02-28 -0.00726
## 3 2013-03-28 0.0145
## 4 2013-04-30 0.0415
## 5 2013-05-31 0.117
## 6 2013-06-28 -0.00265
## 7 2013-07-31 0.0970
## 8 2013-08-30 0.0600
## 9 2013-09-30 0.0677
## 10 2013-10-31 -0.0167
## # ℹ 134 more rows
portfolio_returns_tbl %>%
ggplot(mapping = aes(x = portfolio.returns)) +
geom_histogram(fill = "magenta", binwidth = 0.01) +
geom_density() +
# Formatting
scale_x_continuous(labels = scales::percent_format()) +
labs(x = "returns",
y = "distribution",
Title = "Portfolio Histogram and Density")
What return should you expect from the portfolio in a typical quarter?
In a typical quarter, between 2012-2024, this portoflio yields between 0-10% increase.