# Load packages
# Core
library(tidyverse)
library(tidyquant)
Collect individual returns into a portfolio by assigning a weight to each stock
Choose your stocks.
from 2012-12-31 to 2024-12-31
symbols <- c( "TSLA", "RIVN", "F", "TM")
# Using tq_get() ----
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2024-12-31")
asset_returns_tbl <- prices %>%
# Calculate monthly returns
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "quarterly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
# remane
set_names(c("asset", "date", "returns"))
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
w <- c(0.25,
0.25,
0.25,
0.25 )
w_tbl <- tibble(symbols, w)
portfolio_returns_rebalanced_quarterly_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
col_rename = "returns",
rebalance_on = "months")
portfolio_returns_rebalanced_quarterly_tbl
## # A tibble: 48 × 2
## date returns
## <date> <dbl>
## 1 2013-03-28 0.0608
## 2 2013-06-28 0.343
## 3 2013-09-30 0.187
## 4 2013-12-31 -0.0959
## 5 2014-03-31 0.0716
## 6 2014-06-30 0.0768
## 7 2014-09-30 -0.0356
## 8 2014-12-31 0.00850
## 9 2015-03-31 0.00237
## 10 2015-06-30 0.0608
## # ℹ 38 more rows
portfolio_returns_rebalanced_quarterly_tbl %>%
ggplot(aes(x = date, y = returns)) +
geom_point(color = "cornflower blue") +
# Formatting
scale_x_date(breaks = scales::breaks_pretty(n = 6)) +
labs(title = "Portfolio Returns Scatter",
y = "monthly return")
portfolio_returns_rebalanced_quarterly_tbl %>%
ggplot(aes(returns)) +
geom_histogram(fill = "cornflower blue",
binwidth = 0.005) +
labs(title = "Portfolio Returns Distribution",
y = "count",
x = "returns")
portfolio_returns_rebalanced_quarterly_tbl %>%
ggplot(aes(returns)) +
geom_histogram(fill = "cornflower blue",
binwidth = 0.01) +
geom_density(aes(returns)) +
labs(title = "Portfolio Histogram and Density",
y = "distribution",
x = "monthly returns")
expected_quarterly_return <- portfolio_returns_rebalanced_quarterly_tbl %>%
summarise(mean_return = mean(returns, na.rm = TRUE),
sd_return = sd(returns, na.rm = TRUE))
expected_quarterly_return
## # A tibble: 1 × 2
## mean_return sd_return
## <dbl> <dbl>
## 1 0.0238 0.138